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Abstract
cloth deformation for skeleton-based characters with a two-

We present a novel learning method to predict the

stream network. The characters processed in our approach
are not limited to humans, and can be other skeletal-based
representations of non-human targets such as fish or pets. We
use a novel network architecture which consists of skeleton-
based and mesh-based residual networks to learn the coarse
and wrinkle features as the overall residual from the template
cloth mesh. Our network is used to predict the deformation
for loose or tight-fitting clothing or dresses. We ensure that
the memory footprint of our network is low, and thereby
result in reduced storage and computational requirements.
In practice, our prediction for a single cloth mesh for the
skeleton-based character takes about 7 milliseconds on an
NVIDIA GeForce RTX 3090 GPU. Compared with prior
methods, our network can generate fine deformation results
with details and wrinkles.

Keywords Cloth deformation, learning based network,
skinning

1 Introduction

Cloth animation is an important problem in computer graph-
ics due to its wide range of applications, including video
games, special effects, and virtual try-on. It is regarded as
a challenging task due to the model complexity of the cloth
and the ability to perform irregular cloth deformations. Fur-
thermore, many applications require interactive performance
on commodity hardware, including mobile devices. This
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Fig.1 Given a skeleton-based representation of a character cor-
responding to target poses and different types of cloth (loose or
tight-fitting), we use a two-stream skinning network to predict the
cloth deformation for the target character. (a) and (b) correspond
to the same human character with tight and loose-fitting clothing,
respectively; (c) is a different human character wearing a long robe.
Our network can also handle non-human characters such as a monster
(d), a dolphin (e), or even a cat (f).

problem has been extensively studied in the literature. In
order to achieve high-quality and reliable results, many ef-
ficient techniques based on physics-based simulation (PBS)
have been proposed [1-7]. In these methods, the underly-
ing cloth is modeled as a 3D surface mesh subdivided into
finite contiguous triangles, and they use collision handling
methods to generate accurate simulations. However, these
methods cannot provide real-time frame rates for interactive
applications.

There has been considerable work on using machine learn-
ing methods to significantly reduce the computational cost
of predicting cloth deformation. Many learning-based net-
works [8—10] have been proposed for SMPL-based(Skinned
Multi-Person Linear Model) parametric 3D human mod-
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els [11]. These SMPL-based methods are used to generate
smooth deformations for humans moving with tight-fitting
clothes. The prediction is generated in real-time because of the
small number of parameters used in SMPL-based networks.
However, the SMPL-based model is limited and cannot be
used on arbitrary objects or characters used in games. In
order to handle more general characters and enhance the
quality of prediction, other algorithms use multi-layer per-
ceptron (MLP) models on the vertices of the cloth mesh
to learn the deformation [12]. Without using the topologies
of a cloth mesh, such MLP-based method tends to train a
network with a large number of parameters, which increases
the memory overhead and the runtime cost. Recently, Graph
Convolutional Networks (GCN) have been used to predict the
]. In

practice, these methods need the pre-deformed cloth for the

cloth draping results on the human characters [13—
target pose [13, 14] or can only process the draping results
on human characters in a T-pose [15].

In this paper, we deal with skeleton-based characters, which
are widely used in computer games and other interactive
applications. These include human-like characters (such as
leading roles), monster characters similar to humans (such
as trolls), and animal characters (such as pets). All these
different characters can wear different types of clothes. We
propose a learning-based cloth skinning model to capture
the coarse and wrinkle features to obtain the final cloth
deformation. Our approach is general and designed for all
types of skeleton-based characters, including humans and
animals. Furthermore, these characters can be dressed with
loose or tight-fitting clothes.

Our formulation models the cloth draping deformation as
the skinning of the cloth template at a canonical pose (such
as a T-pose or a A-pose). Given the skeleton information and
mesh information of the posed character, the deformation of
the cloth is computed by skinning weights and the template
cloth mesh. In order to handle different skinning characters
and cloth, we design a novel two-stream network architecture
to learn the residual positions of vertices of the cloth template
mesh. It consists of a mesh-based residual stream and a
skeleton-based residual stream. The skeleton-based residual
stream is trained to obtain the coarse residual on the cloth
template mesh, while the mesh-based residual stream is
trained for the wrinkle features. The prediction examples of
our two-stream skinning network are as shown in 1.

We qualitatively and quantitatively analyze the performance
of the proposed two-stream skinning network in a variety
of scenarios. These include human-like characters and other
characters. We validate our two-stream network thorough the
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ablation experiments. Compared with recent methods, our
two-stream network can capture the fine details of the cloth
deformation.

The novel components of our work include:

* A learning-based cloth skinning model: Our approach
models the cloth deformation as the learning-based
skinning of the template cloth mesh. Our skinning model
is not limited to humans and can process many skinning
characters.

¢ Two-stream skinning network architecture for cloth
deformation prediction: Based on the learning-based
cloth skinning model, we design a novel two-stream
network architecture for cloth deformation prediction.
The architecture consists of a mesh-based residual stream
which is trained for wrinkle features, and a skeleton-
based residual stream which is trained for coarse features.

* Ability to process different types of clothes and char-
acters: Our network can process various types of char-
acters and clothes. These characters and clothes can vary
considerably.

We show the prediction results of our proposed skinning-
based network on different human characters, non-human
characters with different cloth types in Section 5. We compare
our method qualitatively and quantitatively with other methods
in Section 6. We can predict deformed clothes at an average
of 7 milliseconds on an NVIDIA GeForce RTX 3090 GPU.
As compared with prior approaches, our method can predict
the deformation results with fine wrinkles and details.

2 Related Work

In this section, we give an overview of cloth deformation
prediction using traditional PBS methods and recent learning-
based methods. Many learning-based methods are limited to
the SMPL model; we describe these methods in Section 2.2
and highlight other learning methods in Section 2.3.

2.1 Physics-based Simulation

PBS methods for generating deformed cloth are commonly
based on the pipeline of time integration [1], collision de-
, 7]. While they
can accurately model the deformation and result in non-

tection [4, 6], and collision response [4,

penetrating simulations, the running time is not fast enough
for interactive applications. To accelerate the simulation, re-
cent research tends to use GPU-based algorithms to parallel
the pipeline [16, 17]. However, current methods can simulate
each frame in hundreds of milliseconds on high-end desk-
top GPUs. Moreover, the performance of these simulators
depends on various parameters, such as material attributes,

which are hard to fine tune.
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2.2 SMPL-based Learning Algorithm

Many learning methods have been proposed based on SMPL-
based parametric 3D human models. [I1] proposed para-
metric skinning human models using SMPL, where the de-
formation of the human body mesh is driven by the skinning
skeleton of the template body mesh. [&] regard the cloth
mesh as the sub-mesh of the SMPL body mesh, and use an
indicator matrix to select the associated vertices on the body
mesh as the initial state. The proposed network, TailorNet [8],
is trained as an increment from the initial state to represent
the template cloth mesh. This is used to perform skinning
operations to obtain the final deformation on the target pose.
[18] use the skinning body mesh directly on the target pose
as the initial state and learn a graph-attention-based network
to predict the residual between the initial state and the final
deformed cloth mesh with wrinkles. These methods use the
vertices on the unposed template body mesh or posed target
body mesh as the initial state of the deformed cloth mesh
and train different networks to fit the residuals of the ground
truth. Therefore, the predictions of these methods may not
generate plausible results on some loose-fitting clothes such
as dresses, because the vertices may be far away from the
body mesh.

Other algorithms have been proposed that treat the cloth
mesh deformation as a skinning deformation similar to the
]. These methods tend to build
a skinning model for cloth deformation from the canonical

body mesh skinning [ 1,
template cloth mesh. [10] use a garment fit regressor and a
garment wrinkle regressor to learn the nonlinear residuals of
the ground truth from the canonical cloth mesh. To enhance
] smoothly dif-
fuse the skinning parameters of neighbors for each vertex on

the performance on loose-fitting clothes, [

the unposed cloth mesh. They propose an optimization-based
strategy to project ground-truth garments to the canonical
space without introducing collisions. However, the diffusion
of the skinning parameters is only operated on the unposed
canonical cloth, which makes the improvement of the pre-
dictions on the loose-fitting clothes limited. [9] use GCN to
extract features on the unposed canonical cloth mesh to learn
the blend weights. These methods ignore the impact of the
poses on the skinning weight parameters. In practice, all these
networks are constrained by the pose and shape parameters
of SMPL.

2.3 Learning-based Cloth Deformation

Many learning-based methods have been proposed for general
cloth meshes and characters that are not limited to SMPL-

based representations. [!3, 14] use dual quaternion skinning

DQS) [

template from the canonical pose and use GCN blocks to

] to generate the pre-deformation of the cloth

learn the residuals from the pre-deformation to the ground
truth cloth mesh. [21] use the PCA to obtain the subspace of
the cloth and the obstacle and use MLP to regress the non-
linearity in subspace deformation. Unfortunately, using the
previous predictions as the input of the subsequent predictions
will accumulate the error and hinder the quality of the result.
[12] only use the vertex coordinate of the cloth mesh to
learn a cloth descriptor that can be fused with motion in
latent space. Considering the difficulty of predicting the cloth
deformation caused by body pose, [!5] use an encoder and
decoder architecture with GCN to learn the draping effect of
different cloth types on the canonical pose. Other methods are
designed for general triangle mesh-based obstacles [2 1, 22].

Many techniques have been proposed to estimate a
collision-free subspace of general 3D deformable models and
used to compute collision-free cloth configurations [23, 24].
For human-like characters, many learning methods [13, 25]
use collision loss to penalize penetrated garment-body pairs
during training. Our approach for handling arbitrary charac-
ters and clothing types is complimentary and can be combined
with these methods.

3 CTSN: Our Approach

Our approach takes a skeleton-based character of the target
pose and cloth template of the canonical pose as input and
predicts cloth mesh deformation for the target pose charac-
ter through a skinning-based network. The skeleton-based
character of the target pose has the skinned mesh and the
transformation information of the joints. The key concept
of our approach is a novel skinning-based cloth model. We
propose a network architecture composed of two residual
networks based the cloth model. We present the details of our
skinning-based cloth model and the network architecture in
following sections.

3.1 Skinning-based Cloth Model
3.1.1 Skinning-based Character Model

Our skinning-based cloth model is inspired by the skinning-
based character model, SMPL [11]. We give a brief overview
of the SMPL model and the symbols used in the rest of the
paper.

In the standard skeletal rigging, the posed character is
calculated by the following formula:

MB(V):W(TBHL’WWB) (1)

where M g (7y) is the posed character mesh; T's is the template
character mesh at the canonical pose; J is the skeleton of
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Fig.2 Our network architecture is composed of the mesh-based residual stream and the skeleton-based residual stream (shown as the
green blocks) to obtain the wrinkle residual A /() and the coarse residual Ag (7). « is the transformation matrix of the target pose. The
updated cloth template mesh T (+y) is used by the skinning operation to obtain the final deformed cloth mesh M¢ (7).

character; «y is the transformation matrix of the character
joints; W is the skinning weight matrix; and W (-) is the
skinning function. The parametric skinning human model
SMPL [
of shape and pose displacements to capture the soft-tissue

] uses a set of orthonormal principal components

dynamics. This model is represented as:
Mg(B,0) = W (Tg(B,0),J(B),0,Ws)
Tp(8,0) = Tp + Bs(3) + Bp(0)

where (3 and 6 are the shape coefficients and the pose vector,

2

which contains the transformation information of the joints,
respectively. J () is the skeleton position with shape coeffi-
cients 5. T(/3,0) is the template human mesh, which is the
function of 8 and 6. To capture the soft-tissue dynamics, body
shape blend offsets Bg(/3) and pose blend shapes Bp(6) are
fused to the initial template human body mesh T g to generate
the final template human mesh Tz (3, 0).

3.1.2 Our Two-stream Skinning-based Cloth Model

Cloth deformation is driven by the character motion since
cloth is dressed on the surface of a character mesh. To simplify
the deformation problem, we use a skinning-based model for
the template cloth mesh to guide the deformation. Inspired by
the SMPL model and other approaches [
method to build a skinning based model for cloth deformation.

], we present a new
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Thus, given a template cloth mesh T'¢ at the canonical pose
and the skeleton transformation matrix at the target pose~,
the deformed cloth M () is defined as follows:

MC("}/) =W (TC<7)ﬂ J377WC)7

Tc(v) = Te + As(y) + Au(y),
where 7 is the transformation matrix of the joints of the target

3)

character body. W is the skinning weight matrix for cloth
template mesh T c. For the skinning function W (+), LBS(+)
represents the linear blend skinning (LBS) method [26],
which is widely supported by game engines. T () is the
optimized template cloth mesh at the canonical pose. Ag(7)
is the skeleton-based residual positions trained to obtain the
coarse features. Ay (7y) is the mesh-based residual positions
trained for adding wrinkle details to the coarse prediction.
We highlight our two-stream network architecture in Fig. 2.

Our network architecture consists of a mesh-based residual
stream and a skeleton-based residual stream. The mesh-based
residual stream is designed to compute the impact of the
nearest vertices of the cloth on the posed character mesh on
the cloth template mesh, i.e. Az (7), while the skeleton-based
residual stream is used to model the influence of skeleton
information of the character to the cloth template mesh, i.e.
Ag (7). Since the cloth type can be tight or loose, we train the
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skinning weight matrix W for different types of cloth. We
present more details in Section 3.2, 3.3, and 3.4. In general,
our network architecture can be expressed as:

MC(’Y):NU(TCaTBvJa’%WBvWC)a (4)

where A, is the skinning-based network and o represents the
trainable parameters.

Similar to TailorNet [8], we decompose the deformed
cloth mesh to the low-frequency and the high-frequency
deformations. To obtain the low-frequency of the cloth mesh,
we perform the Laplacian smoothing to the simulated cloth
mesh. The high-frequency deformation is residual wrinkle
details.

3.2 Skeleton-based Residual Stream

In our skeleton-based residual stream, the input is the trans-
formation matrix ~ of character joints at the target pose.
We pass the transform matrix « into the pose embedding
network, which is composed of an MLP, to learn the pose
embedding P = { Py, P, P, - - - , P, }, where m is the size
of the embedding vector P:
P = (P(V)’ )
where ®(-) is the MLP-based pose embedding network.
After the pose embedding, our goal is to learn a set of

character residual matrices D = {Bj, Bo, B3, -+ B, } for
the character and cloth pair. As for matrix B, where j ¢

{1,2,---,m}, B; can be expressed as:
boo -+ bo2

Bi=| : . i | ©)
boo -+ bno

where bgg, - , b2, -+ ,bno, - ,bpo are trainable for the

target character and cloth. n is the number of vertices of the
template cloth mesh.

Finally, the pose embedding P is fused as the weights to
the residual matrix D to obtain the skeleton-based residual
component Ag(7):

j=m
As(y) =) P;B; (7)
j=0

To train the skeleton-based residual stream to obtain the
coarse features, we use the obtained low-frequency deforma-
tion as the ground truth.

3.3 Mesh-based Residual Stream

The skeleton-based residual stream can only predict the
position offset Ag(+y), which captures the coarse features of
the target deformation. The prediction results of the skeleton-
based residual stream are smooth. To improve the prediction,

we use a mesh-based residual stream to learn the wrinkle
residual for the final cloth deformation.

We build a KD-tree for the template cloth mesh and the
body mesh at canonical pose. We use this tree data structure
to find the nearest point index I on the body mesh for
each vertex on the cloth mesh. Given the input transform
matrix of the skeleton of the body, we can obtain the skinned
body mesh at the target pose by using our skinning method.
We obtain the positions V of the nearest points through the
selected index 1. In order to improve the effectiveness of our
mesh-based residual stream, we also build the reference mesh
graph My, = (V, &, A), where V corresponds to the nearest
vertices computed previously as the nodes of the graph My
€ C V x V corresponds to the edges of the template cloth
mesh, and A is the (0, 1) adjacency matrix that highlights the
connectivity of the vertices V.

We use the Graph Transformer network [27] to extract
features on the predefined constructed mesh graph M,,. The
architecture of the mesh-based residual stream is illustrated

in Fig. 3.
Trainable
mesh matrix
9]
E _ M
i He £ Wrinkle
s Z 3 ! Ms residual
[ =
55 & =2 8,(v)
= | >
D
o M
My

Fig.3 The architecture of our mesh-based residual stream. We use
Transformer Graph Convolutional Network to extract features of the
reference mesh graph My = (V, £, A). The extracted features are
transmitted to vertex level MLP layers and trainable mesh matrices
to obtain the wrinkle residual.

In the Graph Transformer layers of our mesh-based residual
network, we define H() = {hgl), D hg)} as the node
features of previous layer [, where n is the number of nodes.
ht € R¥ represents the features of node i in layer [ whose
dimension is F. hé represents the features of node j in layer
l, where node j is the neighbor of node ¢. The multi-head
attention features fc(lz) ; of head ¢ from node j to node ¢ are
computed as follows:

o) = W0 18,
(O A OFX ORI O]
kej =W, hi”+b.k
€cij = Wc,eeij + bc,e
l l l
Feky = (@) T () + eciy)
where Wc(}(;, Wc(llz, We.e, bgz, bg_L, and b . are trainable
parameters. e;; represents the edge features.

®)
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After normalization, the multi-head attention coefficients
a®

a, ;; of head c from node j to node ¢ are computed as:

0) 1o
Qe = softmax ﬁ 9

where d is the hidden size of each head. The output features
h(+1) of the node i in layer [ 4+ 1 are calculated by the
following formula:

o = WD )

l
AED = |2y LY el (00 +ecs)

JEN (@)

(10)

where C is the number of the head. WC( » and b”L are trainable
parameters. A/ (¢) is the neighbors of the node 4. || is the
concatenation operation for C' head attention.

In order to improve the ability of the feature extraction,
Bfl) is calculated as follows:

Tl(l) _ W(l)h(l) + b,&”
() W(l) [ﬁElJrl);rl(l); a+D) _ Tz(l)} (11
ﬁ;l) = sigmoid (gﬁ)
Thus, the final output features of the node ¢ in layer [ + 1 are
updated as:

P = ( 0 ) D 4 5O (Wr(l)hgl) n bﬁl))

hglﬂ) = ReLU ( LayerNorm (r(lﬂ))) .

K2

12)

As shown in Fig. 3, we use the Graph Transformer net-
work to extract features of the mesh graph. After the feature
extraction on the mesh graph, we use a vertex level MLP
and a set of trainable mesh matrices to obtain the wrinkle
residual positions. The trainable mesh matrices are repre-
sented as { M7, Ma, M3, - - - M, }. ReLU(:) is used to match
the nonlinearity of the high-frequency deformation. A ()
is computed from the mesh graph M, as:

Au(y) = ¥(My),

where U(-) represents the mesh-based residual stream. Sim-

(13)

ilar to the skeleton-based residual stream, we use the high-
frequency deformation as the ground truth to train the mesh-
based residual stream.

3.4 Skinning Operation

After obtaining the skeleton-based residual component Ag
and the mesh-based residual component A 5;, we compose a
new optimized template cloth mesh T (7).

To solve the impact of cloth types (tight-fitting or loose-
fitting) on the final prediction results, we learn a weight

TSINGHUA @ Springer
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residual AW for different cloth types. AW is represented

as:
Woo - Wok
AWe = (14)
Wy + Wok
where wg, - -+ , Wy are trainable parameters and k is the

maximum number of joints.
The fusion skinning weight matrix is generated as:

We = Wk + AW, (15)

where W/, represents the initial cloth weight obtained from
the template body skinning weight W through KD-tree.

In general, pose embedding function ¥(-) and D are trained
by skeleton-based residual stream for the coarse deformation,
while U (M),) is trained by mesh-based residual stream for the
wrinkle deformation. W is trained for processing different
types of cloth.

3.5 Loss Function

To optimize the parameters of our network architecture, we
use the following loss function to minimize the difference
between the predicted deformed cloth mesh and the ground
truth:

(16)

S -l

=1 j=1

Ty

where xg) is the predicted position of vertex 7 on the deformed
cloth mesh M¢p. xg is the position of vertex j on the ground
truth cloth mesh Mgq. N is the number of vertices of cloth

mesh Mcg. ||-- - ||5 is the Lo distance. b is the batch size.

4 Dataset and Implementation

In this section, we describe the generation of our dataset and
some implementation details.

4.1 Dataset

We have generated many different characters and clothing
types to validate our network architecture (as shown in Fig. 4).
We upload the character meshes of Andy and Qman in canon-
ical poses, such as a T-pose, to the motion capture website
Mixamo®. We download many character poses computed
from that website as FBX files. To eliminate the absoluteness
of the vertex position and make it easy to train our network,
we move the hip joint of the character mesh to the origin of
the coordinates. Next, we extract the transformation matrix
of the character at different poses and the skinning weights

W from the FBX files.

@ https://www.mixamo.com/
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No. Character Cloth Cloth  Character Joints Sample
faces faces number
1 Andy Dress 15176 12999 25 15040
2 Andy Tshirt 12392 12999 25 15040
3 QMan  Tshirt 16148 14664 25 12480
4 QMan Robe 19168 14664 25 12480
5 Monster Robe 13637 20112 25 485
6 Dolphin Cloth 7878 3212 1 93
7 Cat Cloth 3107 2636 25 103

Fig.4 The attributes of different characters and clothing types used
for our evaluation. We obtain different poses of characters from the
Mixamo website. We extract the transformation matrix and skinning
weight from the motion files. We use the cloth simulator ARCSim
to precompute the deformed cloth mesh for training.

After extracting of the motion files, we use the skinning
operation to obtain the character meshes at different poses
with transformation matrix of joint . We use different cloth-
ing types such as a T-shirt, dress, and robe. The T-shirt is
tight-fitting, and the dress and robe are loose and can result in
complex deformations. In order to compute the ground truth
of the deformed cloth, we use the physics-based simulator
ArcSim [28—
tion, we perform linear interpolation between the adjacent

] to simulate the cloth. During the simula-

poses and relax the cloth mesh to compute the quasi-static
deformation.

To evaluate that our network can process more complex and
different characters, we applied our network on non-human
characters such as a monster, a dolphin, and a cat. The monster
character has a skeleton similar to the human character, while
the dolphin and the cat have different skeletons. The dolphin
character has no leg joints, while the cat model has four legs
without hands. We can also simulate the cloth deformation on
these characters. The monster character wears a loose robe,
and the dolphin and the cat wear tight-fitting clothes designed
for these characters.

The attributes of the skinned character and cloth meshes
are shown in Fig. 4. We have highlighted the number of
triangles of each character mesh and cloth mesh, the number
of joints of the character, and the number of samples used by
our algorithm.

4.2 Network Implementation and Training

We train our network on a standard PC (Ubuntu 20.04
LTS/Intel 17 CPU@4.2G Hz/8G RAM, NVIDIA GeForce
RTX 3090 GPU). Our network is implemented using PyTorch
1.7.0 and Python 3.8.8.
Following [8] and [12], we also split our dataset for
training and testing. For the motion clips obtained from

Mixamo, we split 90% motion clips as training data and the

last 10% motion clips as the test data, which are unseen during
training.

We train our network on the dataset containing different
characters and cloth types. As shown in Fig. 4, our dataset
has 5 skeleton-based characters (2 human characters and 3
non-human characters) with 7 different types of cloth. During
training, we set the learning rate at 1e — 3 and use an Adam
optimizer [31] to train the parameters of the neural network.

4.3 Penetration Handling

It is hard to obtain collision-free predictions or configurations
with learning-based methods on the test data, which is unseen
during training. We use a method similar to [12] to reduce
the penetrations between the cloth and the character. After the
prediction, the predicted deformed cloth mesh is optimized
by minimizing the following function to avoid penetrations
between the cloth and the character:

Ep = Z Hvi — (sz +en?)

1€Vpene

. A7)

where Vjene is the set of penetrated vertices of predicted
cloth. For each penetrated vertex v;, the closest point vertex
vP and normal n” are computed over the character mesh. E3
is the error between penetration vertices on the cloth and the
character mesh. and € is a small step to pull out the penetrated
vertices from the character mesh. During the optimization
process, the positions of V)., are updated, which reduces
the number of localized penetrations or collisions.

5 Results

In this section, we highlight the deformation prediction results
of our network on the unseen test data. We compare our
predictions on the unseen test data with the ground truth
results obtained using a physics-based simulator (ArcSim).

5.1 Predicted Deformation using Our Network

Fig. 5 shows the predicted T-shirt deformation at different
poses for the character Andy. Our predictions show the fine
details with wrinkles, similar to those in the ground truth
deformation. We also show the prediction results of other
types of cloth and another character, Qman, in Fig. 6. Fig. 6 (a)
shows the predicted deformation of the dress on the character
Andy, while Fig. 6 (b) and (c) show the cloth deformation on
the other character, Qman. The dress on the character Andy
in Fig. 6 (a) and the robe on the character Qman in Fig. 6
(c) are both loose-fitting types of clothing. These predictions
validate the effectiveness of our network. Since we train the
mesh-based residual stream and skinning weight for each
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Andy_tshirt
.-
3 y

Predict

Fig. 5 The predicted deformed T-shirt dressed on the character
Andy in different poses. All the input poses are unseen during
the network training. The top row shows the ground truth of the
deformation, while the bottom row highlights the predictions of our
network. We also highlight the fine details and folds in the zoomed
images.

clothing type, the deformation details can be easily captured,
enhancing the predictions.

Our network can also process other non-human characters
with skeletons. The predicted results of our network and
the ground truth on the non-human characters are shown
in Fig. 7. Fig. 7 (a) shows the result of our network on a
non-human character, Monster. The skeleton hierarchy of
Monster is similar to the human characters in Fig. 6. To show
the complex characters that our network can process, we
highlight the results of our network on the Dolphin character
in Fig. 7 (b) and the Cat character in Fig. 7 (c). The Dolphin
has no arm joints or legs joints, while the Cat has four legs
without arms. The cloth on the Dolphin and the Cat are
designed specifically for these characters. The results of our
network show the fine predictions of the cloth deformations on
these non-human characters. As for the non-human characters,
the deformation of loose-fitting cloth is also well predicted.
Fig. 8 shows the loose-fitting cloth dressed on the character
fox. Our network can predict the coarse deformed cloth and
the fine detailed one.

Fig. 9 shows the result of penetration handling described
in Sec.4.3. After post-processing, the penetration between the
back of the character fox and the dressed cloth is eliminated
and the penetration-free result is obtained.

5.2 Prediction Runtime

We can perform cloth deformation prediction with our net-
work both on GPUs and CPUs. We have highlighted the
runtime of predicting a single cloth mesh with different meth-
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(b) Qman_tshirt

(a) Andy_dress (c) Qman_rofi
s

) 4 i %)

Ground truth 4 N

Predict d T

Fig. 6 The predicted deformed cloth on other human characters.
The first column shows the prediction on the character Andy. The
middle and last columns show the deformation predictions on the
character Qman.

ods in Table. 1. The runtime for a GPU is collected on an
NVIDIA GeForce RTX 3090 GPU. The runtime for a CPU is
collected on an Intel I7 CPU. As shown by the table, we can
perform a single prediction within 7ms on a GPU, which is
much faster than prior learning-based [9, 25] or physically-
based algorithms [7]. The running time of our deformation
prediction algorithm on CPU is less than 0.2s.

Table 1 The average CPU and GPU runtime for a single cloth
mesh prediction.

Methods CPU run time (s)  GPU run time (s)
ARCSim 345 /
I-Cloth / 5.12E-2
PBNS 9.55E-2 7.12E-2
DeePSD 3.12E-1 1.25E-1
Our Method 1.72E-1 7.032E-3

6 Comparisons

In this section, we qualitatively and quantitatively compare
the results of our network with prior learning-based methods.
We also perform some ablation experiments to validate the
effectiveness of our network.

6.1 Comparisons with Prior Learning Methods

Many approaches have been proposed to predict cloth defor-
mations using learning-based networks. We have highlighted
many recent methods and their attributes in terms of handling
different kinds of characters and clothing types in Table 2.
] are based on the SMPL model,
which limits them to only processing SMPL human bodies.

Some methods [8, 9, 25,

[10, 20] are also based on the SMPL model. However, it
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Table 2 We compare the characteristics and features of our approach with prior methods. We highlight the unique capabilities of our

approach.
Network for SMPL  Non-SMPL Non-human Rigid Static Single
coth deformation  human human skinned animal  obstacle prediction network
TailorNet[8] v X X X v X
DeePSD [9] v v v X v X
[10] v X X X X X
[20] v X X X X X
[21] 4 v v 4 X X
GarNet [13] v v X X v X
[172] 4 v X X v X
[25] 4 4 4 X v X
DRAPE [32] v X X X v X
N-Cloth [22] v v v v v X
Our method v v v X v v
() e () ettt (et which results in a model with many redundant parameters.
Furthermore, these methods are mostly limited to one or many
‘ specific characters or clothing types. In contrast, our network
~ o can overcome these limitations and is more general.

Ground truth

PP

Predict

Fig. 7 The results of our network on non-human characters.The
first column shows the deformed robe on the Monster, whose skeleton
is similar to that of human characters. The middle column shows the
deformed cloth on the Dolphin, which has no legs. The last column
shows the cloth on the Cat, which has no arms.

is possible to extend them to remove the dependence on
SMPL-based representation. Therefore, we modify these two
methods and compare their results with our method in the
following sections. [21] uses PCA to extract the principal
components of the character vertices and cloth vertices to
learn the relationship with the next deformation in the sub-
space. However, this method uses the previous prediction
as the input for subsequent predictions and may result in
Juse DQS [
cloth mesh from the canonical pose to the target pose and then

accumulated errors. [13, ] to pre-deform the
use a learning-based network to predict the residual of the
pre-deformed cloth mesh and ground truth. This method only
works well on tight-fitting cloth, and its predictions tend to be
] use MLP to learn
the intrinsic features for cloth vertices and character vertices,

smooth and may lose wrinkle details. [

6.2 Qualitative Comparisons

We have implemented the modified versions of [9] and [25]
to process the non-SMPL characters. We replace the SMPL
skinning method with a character skinning method, which is
based on using skeletons. The modified version of [25] is an
unsupervised method. [9] contains the supervised part and
the unsupervised part in its network. We have compared our
network with the supervised part of [9].

Fig. 10 shows the comparison between the prediction of
PBNS [25], DeePSD [9], and our method. As shown in
Fig. 10, the PBNS method [

cloth mesh, which is tightly wrapped on the character and

] tends to predict the deformed

can introduce artifacts in the deformation. The DeePSD
method [9] tends to predict smooth deformations, resulting
in penetrations with the character even after post-processing.
This implies that the prediction of DeePSD [9] is driven less
by the transformation matrix of the character. In contrast,
the results of our method tend to generate deformations
with fine wrinkles. We have also implemented the learning
algorithm [22] and obtained similar results with our method.
The prediction results of [22] can also generate fine wrinkles.
However, [22] uses a significantly higher memory footprint

(about 928.8MB).

6.3 Quantitative Comparisons

We also perform quantitative comparisons between our
method and previous methods. We use the following er-
ror metrics to evaluate the prediction results of our network
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Fig. 8 The results of our network on non-human character fox.
There is a loose-fitting cloth dressed on the character fox. The first
row shows the target pose of the character fox. The second row
shows the ground truth. The third row shows the coarse prediction.
The last row shows the fine detailed prediction.

and others.

1M .
buini = L 3 Jat a3
i=1

N i\T i

1 (n2)'n >

Enorm = — E arccos [ —&F—2L- |,
N ( I

i=1 H%H ””Z

where x; is the position of vertex ¢ of the predicted mesh

(18)

P. xé is the ground truth of vertex i. 45 is the position
evaluation metric between the predicted results and ground
truth. &,y is the provided normal evaluation metric. N
is the number of vertices of the cloth mesh. n!, and n}, are
the normal vectors of vertex ¢ on the predicted mesh and the
ground truth, respectively.

Table 3 We compare the mean and standard deviations of mesh
errors on test samples based on the ground truth computed from
physics-based simulators.

Evaluation PBNS DeePSD  Our Method
mean Eq;5:(m)  7.350E-2  3.10E-2 1.08E-2
std Eqis¢(m) 1.05E-2 6.05E-3 2.11E-3
mean Enorm(°) 42.44 31.72 9.12
std Enorm () 3.26 3.28 1.57

The calculated error metrics are shown in Table 3. The
results generated from our network are more accurate than

TSNGHYs D) Springer

Fig.9 The results of penetration Handling. The left is the situation
of penetration between the character fox and the loose-fitting cloth.
The right is the penetration-free result.

PBNS [25] and DeePSD [9].

We also compare the memory footprint (i.e., number of
parameters used) of different networks in Fig. 11 by measuring
the model size. Compared with [22], whose memory footprint
is 928.8MB, the memory footprint of our method is much
less (36.5MB). The memory footprint of DeePSD is 3.22MB,
and PBNS is 30.4 MB.

6.4 Ablation Experiments

To validate the effectiveness of our network architecture, we
implement a series of ablation experiments. Fig.12 shows
the results of the modified network without some parts of
the overall architecture. Fig. 12 (a) is the ground truth of
the deformed cloth. Fig. 12 (b) is the cloth skinning defor-
mation only with the fixed initial skinning weight. With the
fixed skinning weight, there are artifacts on the skinning
deformation, such as legs and belly. Fig. 12 (c) is the result
with the skeleton-based residual stream and trainable cloth
skinning weight. The deformation in Fig. 12 (c) tends to
obtain the coarse residual. Fig. 12 (d) is the result of our full
network architecture with the skeleton-based residual stream,
the mesh-based residual stream and trainable cloth skinning
weight. Compared with the result of Fig. 12 (¢), Fig. 12 (d)
shows that our mesh-based residual stream can capture the
fine details of the final deformation. Fig. 12 (e) is the result
of our network without the trainable cloth skinning weight.
Without the trainable skinning weight, the skinning result
tends to predict more artifacts. There are folds on the legs
similar to the result of Fig. 12 (b).

The parameter m for the skeleton-based residual stream
and k for mesh-based residual stream also impacts the per-
formance. We have used different values of m and k to train
our network. With the increase in the value of m, the pre-
diction of our network becomes more accurate. However,
the memory footprint also increases, which increases the
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—

(a) Ground truth (b) PBNS

& L

(c) DeePSD (d) Our method

Fig. 10 Comparison of results between our network and previous methods. The first column is the ground truth of the deformed cloth. The
second and third columns are the results of [25] and [9]. The last column is the result of our method. The top and bottom rows are the front

and back views of the deformed predictions.

840

720

600

480

360

240

120

The number of parameters of methods (MB)

DeePSD PBNS N-Cloth Our method

Fig. 11 Our approach can is general in terms of handling all
skeleton-based models and meshes, but has low memory overhead.

model size of our network. We show the relevant memory
footprint of our network on the scene of Qman dressing robe
with m = 5,32,100 and k = 64, 128, 256, respectively in
Table. 4. We choose m = 32 and k = 128 by experiments
and find that increasing /m and & does not obviously improve
the results.

Table4 Memory footprint with different m and k.

Modified network ~ Memory footprint (MB)
m=>5k=064 25.8

m =32,k =128 36.5

m = 100, k = 256 59.5

7 Conclusions, Limitations and Future Work

We present a two-stream skinning-based network to predict
cloth deformation from a template cloth in a canonical pose.
Our method can process different characters and cloth types
retaining the fine details. Since our network is based on the
skinning operation, the memory footprint of our method is
low. The runtime performance of our network is fast, and we
can predict a single cloth deformation in 7ms on a desktop
GPU.

Our approach does have some limitations. Like prior
learning-based methods, collision-free predictions are not
guaranteed by our network. As part of future work, we would
like to overcome the above limitations and extend our work to
unsupervised networks [9] or self-supervised networks [33].
In addition, our method tend to train a specific model for
each character due to the difference between human and
non-human characters.
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(c) With Ag(y) &

(d) With 4, ()

Fig. 12 The ablation experiments of our network. We have disabled the mesh-based residual stream, the skeleton-based residual stream,
and the trainable cloth weights in our method to show the benefits of each component of our architecture.
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