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Figure 1: The running results of our three-stage network in a Unity game scene. Taking into account the movements of characters, our
network can predict cloth dynamic deformations in real-time.

Abstract

We propose a three-stage network that utilizes a skinning-based model to accurately predict dynamic cloth deformation. Our
approach decomposes cloth deformation into three distinct components: static, coarse dynamic, and wrinkle dynamic compo-
nents. To capture these components, we train our three-stage network accordingly. In the first stage, the static component is
predicted by constructing a static skinning model that incorporates learned joint increments and skinning weight increments.
Then, in the second stage, the coarse dynamic component is added to the static skinning model by incorporating serialized
skeleton information. Finally, in the third stage, the mesh sequence stage refines the prediction by incorporating the wrinkle
dynamic component using serialized mesh information. We have implemented our network and used it in a Unity game scene,
enabling real-time prediction of cloth dynamics. Our implementation achieves impressive prediction speeds of approximately
3.65ms using an NVIDIA GeForce RTX 3090 GPU and 9.66ms on an Intel i7-7700 CPU. Compared to SOTA methods, our
network excels in accurately capturing fine dynamic cloth deformations.

CCS Concepts
• Computing methodologies → Machine learning; Physical simulation;

1. Introduction

Cloth simulation is a highly active and important research topic
in computer graphics. The ability to accurately simulate cloth de-

formation has numerous applications in fashion design, movie
making, video games, VR/AR, etc. Continuous advancements in
cloth deformation techniques have significantly enhanced the vi-
sual quality and realism of digital content across various domains.
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By simulating how cloth interacts with external forces, such
as gravity, winds, and collisions, realistic animations and virtual
try-on experiences can be created. physics-based simulation meth-
ods are commonly employed to achieve realism in cloth defor-
mation [BW98; Pro95; BML*14; BFA02; HVTG08; TTWM14;
TWL*18]. These methods involve discretizing the cloth into
smaller elements, such as triangles or particles, and constructing
mechanical models to simulate the stretching and bending behav-
iors of these elements. By applying physical laws and principles,
these approaches allow for the realistic rendering of cloth motion,
folding, draping, and other intricate details. However, due to the
computational complexity, achieving real-time frame rates can be
challenging.

For real-time cloth deformation, data-driven and machine
learning-based approaches have gained popularity. These meth-
ods aim to reduce computational costs by leveraging learned in-
formation about cloth behavior. Several learning-based networks
such as TailorNet [PLP20], DeepSD [BMTE21], and Virtual-
TryOn [SOC19] have been proposed specifically for SMPL-based
human models [LMR*15]. These methods aim to predict how a
particular garment would fit and drape on a specific human body
pose. While these predictions are static, dynamic cloth deforma-
tion is also employed to capture realistic motion and interaction
of clothes in scenarios. By incorporating the dynamic loss func-
tion into an unsupervised learning framework, [BME22] aims to
capture the temporal aspects and physical behavior of cloth in mo-
tion. The proposed dynamic loss function appears to evaluate the
stretching and bending of cloth materials, enabling the prediction
of dynamic cloth deformation. [PMJ*22] extracts virtual skeletons
using SSDR [LD12] from a dataset of dynamic cloth deformation
sequences and utilizes them for predicting cloth deformations. By
employing the GRU module [CVG*14], the method aims to predict
the sequence of virtual skeleton information, which is then used for
the skinning process to obtain the final cloth deformation. How-
ever, this method relies heavily on the extraction results for vir-
tual skeletons of SSDR. A small number of skeletons may result in
lower-quality skinning results.

In this paper, we present a three-stage network designed specif-
ically for skeleton-based characters to predict sequential cloth
dynamic deformations. Our method focuses on constructing a
learning-based skinning model that accurately captures the defor-
mation of clothes worn by these characters. We decompose the
cloth deformation into three distinct components: static, coarse dy-
namic, and wrinkle dynamic components. Each stage of our net-
work is dedicated to predicting one of these components, ultimately
leading to the final dynamic deformation results.

Specifically, the three-stage network comprises a static stage, a
skeleton sequence stage, and a mesh sequence stage, each playing
a crucial role in predicting the different components of cloth defor-
mations. The static stage is responsible for predicting the static de-
formation of clothes for the posed character by optimizing the non-
linear skinning weights of the clothes. The skeleton sequence stage
leverages skeleton sequence information to predict the coarse dy-
namic component of the cloth template. The mesh sequence stage
focuses on predicting the wrinkle dynamic component of the cloth
template. By utilizing mesh sequence information, this stage in-

troduces fine-scale details and intricate dynamic wrinkles to the
cloth mesh. The combination of the skeleton sequence stage and the
mesh sequence stage adds dynamic features to the static deforma-
tion obtained in the earlier stage. By decomposing cloth deforma-
tion into static, coarse dynamic, and wrinkle dynamic components
and utilizing the three-stage network, we can achieve more realistic
and visually appealing cloth simulations for skeleton-based charac-
ters.

Through our qualitative and quantitative analyses, as well as the
comparative experiments, we demonstrate that our three-stage net-
work has the capability to reasonably predict dynamic cloth defor-
mation. We provide a comprehensive evaluation by presenting sev-
eral examples of predicted dynamic deformations, showcasing the
capabilities of our approach. To further validate the efficacy of our
three-stage network, we performed ablation experiments to demon-
strate the effectiveness and necessity of each stage in our proposed
approach. We also conducted comparative experiments with SOTA
methods, including those focusing on static prediction and dynamic
prediction. The comparative experimental results provide insights
into the strengths and advantages of our approach over these meth-
ods.

The contributions of this work include:

• Cloth dynamic skinning model: By utilizing sequence-based
information, such as skeleton sequence and mesh sequence, our
network goes beyond traditional static skinning methods and
takes into account the temporal aspect of cloth deformation.

• Three-stage network for cloth dynamic deformation predic-
tion: We adopt a decomposition approach to divide the defor-
mation process into three distinct components: static, coarse dy-
namic, and wrinkle dynamic components. By learning and mod-
eling each component through a static stage, a skeleton sequence
stage, and a mesh sequence stage, respectively, we can effec-
tively combine their results to predict the final dynamic defor-
mation of the cloth.

• Graph sequence GRU model (GSGRU) for mesh sequential
information: We have introduced a graph sequence GRU model
that enables the extraction of features, obtaining outputs, and
next hidden information from serialized graphs.

Overall, our approach offers a comprehensive solution to pre-
dicting cloth deformation by breaking it down into distinct compo-
nents and leveraging the static and temporal information to achieve
a realistic representation of cloth dynamics on skeleton-based char-
acters.

2. Related Work

In this section, we provide an overview of cloth deformation
techniques, focusing on both traditional physically-based simu-
lation (PBS) methods and recent learning-based approaches. For
learning-based approaches, there are two main categories: static
prediction and dynamic prediction methods. We will discuss both
approaches and highlight their characteristics.

2.1. Physics-based Simulation

Traditional PBS methods iteratively perform time integra-
tion [BW98], collision detection [BFA02; TTWM14], and collision
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response [BFA02; HVTG08; TWL*18] over a sequence of time
steps. The cloth simulation progresses, and the deformation of the
cloth is updated accordingly. These methods, based on principles of
physics, can accurately model cloth deformation and ensure non-
penetrating simulations. However, their computational cost can be
a limitation for interactive applications. To address this limita-
tion, recent research has focused on leveraging GPUs to paral-
lelize the computations [TWT*16; TWL*18; LTT*20; WWW22].
These methods take advantage of the massive parallelism offered
by GPUs to accelerate the simulation pipeline and are typically dif-
ficult to use on devices that are not equipped with GPUs.

2.2. Learning-based Static Prediction

Traditional PBS methods can be computationally expensive and
are hard to achieve real-time performance. In recent years, there
has been a growing interest in using learning-based approaches for
real-time cloth deformation prediction. One popular model used
in learning-based approaches is the SMPL model [LMR*15]. By
leveraging the SMPL model, researchers have developed methods
that can predict cloth deformation in real-time. Patel et al. pro-
posed TailorNet [PLP20]. The cloth mesh is considered a sub-mesh
of the SMPL body mesh. The network aims to learn the incre-
mental changes from the template cloth mesh to obtain the subse-
quent skinning posed cloth. Unfortunately, the performance of this
method on loose-fitting garments may be limited. [BME21] uses an
unsupervised learning method and cloth consistency loss for mass-
spring material to satisfy the prediction of the proposed network.
However, the lack of ground truth data with well-deformed clothes
will pose a challenge in achieving high physical realism in the pre-
diction results. This model may struggle to accurately capture the
intricate details and physical behaviors of loose-fitting clothes or
produce unrealistic deformations.

There are alternative methods that deviate from SMPL-based
approaches and employ different techniques for cloth deforma-
tion prediction. By combining DQS [KCŽO07] for initial pre-
deformation and using GCN [KW16]blocks to learn the residuals,
[GCS*19; GCP*20] methods aim to improve the accuracy and re-
alism of cloth deformation predictions. By leveraging the power of
deep learning and incorporating specific techniques for handling
mesh data, they provide an alternative approach to cloth defor-
mation prediction outside the SMPL-based paradigm. But these
methods are also limited to the tight cloth type. In [VSGC20],
an encoder-decoder architecture is employed, along with GCNs, to
learn the draping effect of different cloth types on the canonical
pose. But it can not effectively handle cloth deformation in poses
other than the canonical T-pose.

2.3. Learning-based Dynamic Prediction

Static prediction methods, which focus on predicting the deforma-
tion of clothes in a single frame or pose, often lack the dynamic
features that contribute to realistic cloth simulation. As a result, the
predicted results may appear stiff or lacking in natural movement.
The use of sequential information in cloth deformation prediction
is an active area of research, and various techniques and architec-
tures have been proposed to leverage this information effectively.

[SOC19] utilizes a garment fit regressor and a garment wrinkle re-
gressor to capture the deviations from the canonical shape. And this
method uses the GRU module to capture the sequence information
to predict the dynamic behavior of cloth deformations. [STOC21]
uses the GRU module and proposes an optimization-based method
to obtain the collision-free prediction of cloth deformation. This
method aims to produce collision-free results based on sequence
prediction. However, these models are specifically designed for the
SMPL model and often rely on the parameters of SMPL.

Besides the SMPL-based models, [HDDN19] uses Principal
Component Analysis (PCA) to obtain the subspace representa-
tion and then employs Multi-Layer Perceptron (MLP) networks to
regress this subspace. [WSFM19], focuses on learning a cloth de-
scriptor using only the vertex coordinates of the cloth mesh. This
cloth descriptor is then fused with motion information in latent
space to capture the dynamic behavior of the cloth. [BME22] em-
ploys an unsupervised learning approach to enhance the generation
of dynamic cloth deformations. By leveraging the sequence-based
dynamic loss, the model can capture temporal dependencies and
generate more accurate and visually appealing cloth deformations.
However, these approaches lack of using the topology informa-
tion of the mesh. [PMJ*22] uses the SSDR method to extract vir-
tual bones from a dataset of dynamic cloth deformation sequences.
And then use a GRU module to predict the virtual bone for the
subsequent skinning process to obtain the final cloth deformation.
But this approach relies on the effectiveness of the SSDR method.
[HLB*23] employs a recurrent graph neural network to enhance

the coarse-resolution mesh with physics-based intricacies. This is
achieved by distinctively separating the force modeling and inte-
gration processes.

3. Method

In this paper, we decompose the cloth deformation into static,
coarse dynamic, and wrinkle dynamic components to enhance the
predictive performance of the network. Figure 2 visually demon-
strates the distinctions between static and dynamic deformations,
highlighting the increased sense of realism in dynamic deforma-
tions.

Figure 2: The static and dynamic cloth deformation: The first col-
umn is the static cloth deformation. The second column is the dy-
namic cloth deformation. The third column is the difference be-
tween static and dynamic.

Inspired by [SOC19; STOC21; SOC22], we proposed a three-
stage network architecture that aims to construct a dynamic skin-
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Figure 3: Our three-stage network architecture: The static stage aims to learn a static cloth skinning model. The skeleton sequence stage
and the mesh sequence stage are trained to add coarse dynamic component ∆St (γ) and wrinkle dynamic component ∆Mt (γ). The serialized
skeleton information and the serialized mesh information are used to add dynamics.

ning model for clothes worn on skeleton-based characters using a
learning-based approach. Thus, the deformed cloth is obtained by
applying the skinning operation to the template cloth mesh TC and
then transforming it according to the target pose using the skele-
ton transformation matrix γ. The specific skinning formulas are as
follows:

MC(γ) =W (TC(γ),J (γ),γ,WC) , (1)

where γ is the transformation matrix of the target pose joints.
TC(γ) is the cloth template mesh relied on γ. J (γ) is the skele-
ton of cloth relied on the joints transformation γ. WC is the skin-
ning weight matrix for cloth template mesh TC. W (·) represents
the skinning function. In this paper, the linear blend skinning (LBS)
method [MLTM88] is utilized.

Specifically, our three-stage network consists of three parts: the
static stage, skeleton sequence stage, and mesh sequence stage.
These stages work together to predict the dynamic deformation of
the cloth. In the static stage, we focus on predicting the static de-
formation of the cloth for specific character poses. After this stage,
we obtain the optimized cloth skinning weight WC and pose-based
skeleton J (γ). The skeleton sequence stage and mesh sequence

stage are the dynamic stages. The skeleton sequence stage aims to
add coarse dynamic deformation from the static prediction of the
static stage. The mesh sequence stage focused on capturing the dy-
namic fine details for the coarse dynamic prediction of the coarse
sequence stage. The skeleton sequence stage and mesh sequence
stage are formulated as follows:

TC(γ) = TC +∆St (γ)+∆Mt (γ), (2)

where TC is the template cloth mesh at the canonical pose. ∆S(γ)
is the coarse dynamic component obtained from the skeleton se-
quence stage. ∆M(γ) is the wrinkle dynamic component obtained
from the mesh sequence stage. We highlight our three-stage net-
work architecture in Fig. 3. Illustrated in Fig. 3, both the static stage
and the skeleton sequence stage employ solely skeleton information
to construct the cloth skinning model. In contrast to the static stage,
which exclusively relies on individual static skeleton information,
the skeleton sequence stage utilizes skeleton sequence data to tran-
sition the static skinning model into a dynamic representation. The
mesh sequence stage leverages mesh sequence information to in-
corporate intricacies into the dynamic cloth skinning model.

By combining the results of the static stage, skeleton sequence
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stage, and mesh sequence stage, we obtain the final dynamic defor-
mation of the cloth. The three-stage network allows us to learn and
incorporate different components of the cloth deformation process,
resulting in realistic and dynamic cloth deformation.

3.1. Static Stage

The static stage in our three-stage network is dedicated to construct-
ing a learning-based skinning model for deforming static cloth
meshes. This stage obtains two components: cloth skeleton J (γ)
and cloth skinning weights WC.

To achieve this, the static stage network is designed with two
parts. The first part uses MLP to learn the increment ∆(γ) of the
cloth skeleton. As depicted in Figure 3, during the static stage, the
transformation matrix γ is flattened and input into the MLP to de-
rive the flattened increment ∆(γ) for the cloth skeleton. For the
initial cloth skeleton JC , we choose the relevant character bones
through the nearest point on the character mesh for each cloth ver-
tex. To obtain this, we build a KD-tree for the template cloth mesh
and the template character mesh. The chosen bone is the character
bone of the nearest point. Thus the newly updated cloth skeleton is
obtained by:

J (γ) = JC +∆(γ), (3)

The second part of the static stage aims to learn the increment
of the cloth weights ∆W . We use a set of trainable weight resid-
ual matrices D = {W1,W2,W3, · · ·Wm} to generate the increment
∆W . m is the number of the cloth bones. For matrix W j, where
j ∈ {1,2, · · · ,m}, W j is expressed as:

W j =

 w00 · · · w0m
...

. . .
...

wn0 · · · wnm

 , (4)

where w00, · · · ,w0m, · · · ,wn0, · · · ,wnm are trainable parameters. n
is the number of vertices of the template cloth mesh.

Thus, the updated cloth weight is calculated as follows:

∆W =W1 +W2 +W3 + · · ·+Wm,

WC =WI +∆W,
(5)

where WI is the chosen character weight through the nearest point
operation as above.

By combining the results from both parts of the static stage net-
work, we obtain a comprehensive learning-based skinning model
for static cloth deformation. This model allows us to predict the
incremental changes in the cloth skeleton and skinning weights.

3.2. Skeleton Sequence Stage

The static stage of our three-stage network establishes a skinning
model that introduces non-linearity into the cloth deformation pro-
cess. However, the skinning model is static. To enhance the real-
ism of prediction, it is important to transition from a static skin-
ning model to a dynamic skinning model. To capture coarse dy-
namic effects in cloth deformation, we introduce the skeleton se-
quence stage. The network architecture of the skeleton sequence

stage is illustrated in Fig. 4. As illustrated in Fig. 4, the GRU mod-
ule [CVG*14] serves as a pose embedding, processing the skeleton
sequence information.

Figure 4: The skeleton sequence stage network: The skeleton se-
quence stage takes two inputs: the skeleton transformation of the
target pose and the hidden information. And it generates the coarse
dynamic component and the next hidden information.

The skeleton sequence stage utilizes serialized skeleton infor-
mation to incorporate dynamic coarse information into the static
skinning model. There are the current skeleton transformation γ

of target pose and the hidden information Ht at current state t as
two inputs. The initial hidden information, denoted as H0 at ini-
tial state t = 0, is initialized as a zero vector. We pass these two
inputs into the pose embedding GRU network, which is composed
of GRU module [CVG*14], to learn the dynamic pose embedding
Pt = {P1,P2,P2, · · · ,Pk}, where k is the size of the embedding vec-
tor P:

Pt ,Ht+1 = GRU(γ,Ht), (6)

where Ht+1 is the next hidden information at next state t +1.

After the pose embedding, we use a set of trainable skele-
ton matrices St = {S1,S2,S3, · · ·Sk}. As for matrix S j, where j ∈
{1,2, · · · ,k}, S j is expressed as:

S j =

 s00 · · · s02
...

. . .
...

sn0 · · · sn2

 , (7)

where s00, · · · ,s02, · · · ,sn0, · · · ,sn2 are trainable parameters. n is
the number of vertices of the template cloth mesh.

Then, the pose embedding Pt is fused with the skeleton matrices
St to obtain the coarse dynamic component ∆St (γ):

∆St (γ) =
j=k

∑
j=0

PjS j (8)

By taking the skeleton transformation of the current pose, and the
hidden information into account, the skeleton sequence stage effec-
tively predicts the coarse dynamic component of the cloth template
and updates the next hidden information.

The skeleton sequence stage captures the sequence dependencies
and movement patterns of the character to add dynamic features
to the cloth deformation. This stage acts as an intermediary stage,
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bridging the gap between static skinning and full-fledged dynamic
deformation.

3.3. Mesh Sequence Stage

The mesh sequence stage is an essential component of our three-
stage network, designed to enhance the dynamic deformation of
the cloth by adding wrinkle detail features. It builds upon the coarse
dynamic skinning model generated in the skeleton sequence stage.

In the mesh sequence stage, we introduce serialized mesh data as
input to capture the detailed features of the cloth deformation. This
serialized mesh data consists of mesh MV t with node features at
the current state t and mesh MHt with hidden information.

Specifically, we use the positions V of the nearest points on
the posed character mesh as mentioned above, the edges of tem-
plate cloth mesh E , and the adjacency matrix A to compose mesh
MV t = (V,E ,A). The mesh MHt(Z,E ,A) is composed of the
hidden information Z , the edges of template cloth mesh E , and the
adjacency matrix A.

Graph Sequence GRU Model(GSGRU). Graph data such as
mesh often consists of interconnected nodes and edges. However,
traditional GRU [CVG*14] struggles to effectively process and
model graph sequence data. To address this challenge, inspired by
[CVG*14; LZBT16], we have designed a graph sequence GRU
model(GSGRU) that operates on serialized graphs. The model is
capable of capturing the sequential dependencies present in the se-
rialized graphs.

We define X (l) =
{

x(l)1 ,x(l)2 , . . . ,x(l)n

}
as the node features of

previous layer l on mesh graph MV t . n is the number of nodes.
xl

i ∈ RFV represents the features of node i whose dimension is
FV in layer l on mesh graph MV t . Similarly, we define H(l) ={

h(l)1 ,h(l)2 , . . . ,h(l)n

}
as the hidden features of previous layer l on

mesh graph MHt . hl
i ∈ RFZ represents the hidden features of node

i whose dimension is FZ .

For the node features of node i on mesh graph MV t , the node
features are updated by follow:

a(l)i = ∑
j∈N (i)

e jiWpx(l)j +b (9)

where ei j represents the edge weight from node j to node i. node j
is the neighbor of node i. Wp and b are trainable parameters. N (i)
refers to the neighboring nodes of node i.

Then, the updated node feature a(l)i and hidden feature h(l)i are
fused to obtain the update gate as follow:

zl
i = σ

(
Wza(l)i +Uzh(l)i

)
(10)

where Wz and Uz are trainable parameters. σ is the activation func-
tion and is formulated as:

σ(x) = 1/
(

1+ e−x
)

(11)

where x is the input of the activation function.

The reset gate is calculated by:

rl
i = σ

(
Wra(l)i +Urh(l)i

)
(12)

where Wr and Ur are trainable parameters.

Then the gate signals are fused with the features:˜
h(l+1)

i = tanh
(

Wa(l)i +U
(

rl
i ⊙h(l)i

))
(13)

where W and U are trainable parameters, the operator ⊙ represents
element-wise multiplication.

The hidden features for the next layer l+1 is updated as follows:

h(l+1)
i =

(
1− zt

i
)
⊙h(l)i + zl

i ⊙
˜

h(l+1)
i (14)

And the output features of the current layer l are calculated as
follows:

o(l)i = MLP(h(l+1)
i ) (15)

By incorporating both the node features and hidden information
of the mesh, the GSGRU can effectively capture and model the
intricate details and dynamics of the cloth deformation over mesh
sequences.

Mesh Sequence Stage Architecture. The architecture of the mesh
sequence stage, as shown in Fig. 5, utilizes the GSGRU model to
process serialized mesh data and capture the sequence dependen-
cies. As depicted in Fig. 5, two sets of mesh data are fed into
the GSGRU model to extract sequence-relevant features. Subse-
quently, LayerNorm [BKH16] and PReLU [HZRS15] functions are
employed to introduce nonlinearity. Then, several analogous struc-
tures follow, wherein the GSGRU, LayerNorm, and PReLU layers
from the previous stages are concatenated.

Figure 5: The mesh sequence stage network: The mesh sequence
stage takes mesh node features and mesh hidden information as
inputs. And it generates the wrinkle dynamic component and the
next hidden information.

Regarding the initial hidden information H(0) of the mesh graph
MH0 at the initial state t = 0, it is initialized as a zero vector. This
leads to the initial hidden information of the mesh graph MH0
being represented as a zero tensor.

After the feature extraction on the mesh sequence, we use
a vertex level MLP to learn the global embedding Qt =
{Q1,Q2,Q2, · · · ,Qk} and a set of mesh matrices are trained as
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Mt = {M1,M2,M3, · · ·Mk}. Then he wrinkle dynamic component
∆Mt (γ) is calculated as:

∆Mt (γ) =
j=k

∑
j=0

Q jM j (16)

Considering both the node features and hidden information of
the mesh, the mesh sequence stage can effectively capture the wrin-
kle dynamics of the cloth deformation.

Incorporating the mesh sequence stage into our three-stage net-
work, we are able to capture both coarse and fine details of the cloth
deformation, resulting in a final dynamic deformation that exhibits
realistic wrinkle patterns and enhances the overall visual quality of
the cloth simulation.

3.4. Loss function

To optimize the parameters of our network architecture, we utilize
the Mean Squared Error (MSE) loss that quantifies the difference
between the predicted deformed cloth mesh and the ground truth.
The specific form of the loss function is defined as follows:

L=
1
N

N

∑
j=1

∥∥∥x j
p − x j

g

∥∥∥
2
, (17)

where x j
p is the predicted position of vertex j in the cloth mesh. x j

g
is the corresponding ground truth position. N is the number of cloth
vertices. ∥· · ·∥2 is the L2 distance.

4. Dataset and Implementation

In this section, we provide details about the dataset generation pro-
cess and discuss some implementation aspects of our method.

4.1. Dataset

To capture the dynamic deformation of loose-fitting garments, we
create two specific types of clothing: a loose skirt and a loose robe.
The skirt has 7964 vertices and 15176 triangle faces, while the
robe has 9738 vertices and 19168 triangle faces. These garments
have fewer constraints imposed by the character’s body and allow
for more pronounced dynamic deformation during character move-
ment.

To generate action sequences for our dataset, we obtained char-
acter motion FBX files from the Mixamo website https://www.
mixamo.com/. These FBX files contain predefined animations for
various actions, such as walking, running, and jumping. We chose a
range of action sequences to ensure diversity in the types of move-
ments and poses exhibited by the characters. We use 45 sequences
to train our network and left 4 sequences for testing. We set the hip
joint of the character as the coordinate origin for all poses in the ac-
tion sequences. This step helps align the positions of the characters
across different frames and eliminates any translation differences
that may exist in the original FBX files. Then, we extracted the
joint transformation matrices of the character at a frame rate of 30
FPS for each pose of the action sequences. The template mesh and
skinning weights are extracted from the FBX files.

We employed the ArcSim simulator [NSO12; NPO13; PNDO14]
to generate both static and dynamic cloth deformations for our ex-
periments. For the static deformations, we performed pose inter-
polation to generate the intermediate static deformations between
adjacent keyframes. During the static deformation simulation, we
allowed the cloth to relax to eliminate any dynamic effects. For the
dynamic deformations, we performed regular cloth simulations us-
ing the ArcSim simulator.

4.2. Implementation

Our network training was conducted on a standard PC with the fol-
lowing specifications: Ubuntu 22.04 LTS operating system, Intel
Core i7 CPU running at 4.2 GHz, 8 GB of RAM, and an NVIDIA
GeForce RTX 3090 GPU. The implementation of our network was
done using PyTorch 1.7.0 and Python 3.8.8.

The training process for our network is divided into three stages,
aligning with the architecture of our network. Each stage focuses on
training a specific component of the network to achieve the desired
cloth deformation. The first stage involves learning the skinning
weights and joint increments of the cloth to obtain a static skinning
model. Once the static stage is trained, we move on to the second
stage. In this stage, we fix the skinning weights and joint incre-
ments obtained from the first stage and focus on training to capture
the coarse dynamic component of the cloth deformation. Then, we
proceed to the third stage. In this stage, we fix the weights obtained
from the previous two stages and train to capture the wrinkle dy-
namic component of the cloth deformation.

During the training process, we set the learning rate to 1e−3 and
employed the Adam optimizer [KB14] to update the parameters of
our neural network.

4.3. Penetration Handling

We employ a post-processing optimization method similar to the
one described in [WSFM19] to address the issue of penetrations
between the cloth and the character in the predicted deformations.
This optimization step is performed after the prediction is gener-
ated, and its purpose is to refine the predicted deformed cloth mesh
to reduce penetrations and achieve collision-free configurations.
The deformed cloth mesh is refined by minimizing the following
function:

EB = ∑
i∈Vpene

∥∥∥vi −
(

vB
i + εnB

i

)∥∥∥ , (18)

Here, Vpene signifies the collection of vertices in the predicted cloth
mesh that have penetrated. For each penetrated vertex vi, the cor-
responding closest point vertex vB

i and its associated normal nB
i are

computed based on the character mesh. The term EB quantifies the
error stemming from penetration vertices found in both the cloth
and character meshes. Additionally, ε denotes a minor adjustment
employed to displace the penetrated vertices away from the charac-
ter mesh.

5. Results

In this section, we showcase the prediction results of our network
and provide a comprehensive comparison with the results obtained
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Figure 6: The predicted static deformed skirt results on test unseen
data: The top row shows the ground truth of the static deformation,
while the bottom row highlights the predictions of our network.

from static prediction deformation, coarse dynamic deformation,
and wrinkle dynamic deformation.

5.1. Predicted Deformation

Fig. 6 and Fig. 7 visually demonstrate the outcomes of the differ-
ent stages in our network for predicting cloth deformations. The
static prediction results obtained from the static stage are shown
for the skirt in Fig. 6. Fig. 7 presents the dynamic prediction re-
sults of our network, showcasing the contributions of the skeleton
sequence stage and the mesh sequence stage. The second row il-
lustrates the outputs of the skeleton sequence stage, which intro-
duces coarse dynamic effects on top of the static deformation. The
third row displays the prediction results of the mesh sequence stage,
which further refines the dynamic effects by adding detailed wrin-
kles to the coarse dynamic deformation.

Fig. 8 demonstrates the static and dynamic prediction results of
our network on the robe. The dynamic prediction results exhibit
more realistic deformations in the sleeves and the hem of the robe
compared to the static prediction.

Halimi et al.[HLB*23] utilize a recurrent variant of a graph net-
work[PFSB20] to enhance the level of detail in the initial coarse
cloth mesh. Specifically, Halimi et al. [HLB*23] create recur-
rent graph vertices by concatenating the current state’s force with
the first-order differences in the sequence configurations. This
approach enables them to incorporate sequence information into

Figure 7: The predicted dynamic deformed skirt results on test un-
seen data: The top row shows the ground truth of the dynamic de-
formation. The second row shows the coarse prediction. The bottom
row shows the wrinkle prediction.

a single graph to extract features. In comparison to Halimi et
al. [HLB*23], our GSGRU architecture takes a step further. It op-
erates on two distinct sequence graphs with hidden information, to
dynamically enhance the final cloth deformation.

5.2. Runtime and Model Size

Our three-stage network exhibits excellent real-time performance
in predicting dynamic cloth deformations. When running on an
NVIDIA GeForce RTX 3090 GPU, the network can generate pre-
dictions within a time duration of 3.65ms. And the generation time
of our network is 9.66ms on an Intel Core i7-7700 CPU. The run-
time cost of each stage within our network is presented in Tab. 1.
It’s evident that the static stage incurs the lowest runtime cost,
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Figure 8: The predicted outcomes of the deformed robe in various
character poses: The top row illustrates the ground truth of dy-
namic deformation. The second row displays the static prediction.
The third row presents the coarse dynamic prediction. The bottom
row showcases the dynamic prediction emphasizing wrinkles.

whereas the mesh sequence stage registers the highest runtime cost.
This discrepancy arises from the fact that the static stage exclu-
sively utilizes static skeleton information, resulting in a reduced
parameter count. In contrast, both the skeleton sequence stage and
the mesh sequence stage integrate sequence information, leading
to a higher parameter complexity. Among these stages, the mesh
sequence stage, due to its incorporation of mesh data, carries the
most significant parameter load, consequently elongating its exe-
cution time to the slowest among them. The real-time capability of

our network opens up possibilities for a wide range of applications,
such as virtual reality, gaming, virtual try-on systems, and virtual
character animation.

Table 1: The runtime cost of each stage network on CPU and GPU.

Stage CPU Runtime(s) GPU Runtime(s)

Static Stage 1.92E-4 1.84E-4
Skeleton Sequence Stage 1.05E-3 3.73E-4

Mesh Sequence Stage 8.41E-3 3.10E-3
Total Architecture 9.66E-3 3.65E-3

Correspondingly, the memory footprint of each stage within our
network is illustrated in Tab. 2. The memory footprint of our to-
tal network architecture amounts to 130.5MB. The memory foot-
print of the static stage is 18.9MB. The memory footprint of the
skeleton sequence stage and the mesh sequence stage are 40.6MB
and 71.0MB respectively. As evident, the memory footprint of the
mesh sequence stage surpasses the collective memory footprints of
both the static stage and the skeleton sequence stage. The inclusion
of the mesh sequence stage notably amplifies the parameter count
within our approach. Nonetheless, these supplementary parameters
endow the mesh sequence stage with the capability to refine the
final deformation outcomes by introducing finer details.

Table 2: The runtime cost of each stage network on CPU and GPU.

Stage Memory Footprint(MB)

Static Stage 18.9
Skeleton Sequence Stage 40.6

Mesh Sequence Stage 71.0
Total Architecture 130.5

5.3. Application on Unity

Real-time cloth deformation prediction has various applications in
fields such as computer graphics, virtual try-on, virtual reality, gam-
ing, and animation. The deployment of the network in real-time
scenarios opens up new possibilities for interactive and realistic
cloth deformation in various fields, enabling more immersive ex-
periences and enhancing the efficiency of virtual clothing-related
workflows.

We have deployed our network in Unity. We train the network
and save the trained weights. Then in the Unity project, we write
scripts in C# to load the saved network weights. This step involves
initializing the network architecture and setting the weights to the
corresponding layers and parameters. To predict the dynamic de-
formation of clothes for the posed character, the joint transforma-
tion information is extracted from the character in the Unity scene.
We feed the joint transformation information of the posed charac-
ter into the loaded network model. Then the vertex positions of the
cloth mesh are updated in the Unity scene.

We have the character model, skirt mesh, and other necessary
assets set up in the Unity Editor in Fig. 9. The necessary scripts
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and components are attached to the appropriate game objects to
handle the prediction and visualization.

Figure 9: The application of our network on Unity scene: We de-
ployed our network in Unity to predict the wrinkle dynamic cloth
deformation in real-time.

6. Comparison

In this section, we compare the results of our network with prior
learning-based methods and conduct ablation experiments to assess
the effectiveness of your network.

6.1. Qualitative Comparisons

We have qualitatively compared the predicted cloth deformations
from our network with the results from prior learning-based meth-
ods, as shown in Fig. 10.

The PBNS [BME21] is based on unsupervised learning for static
deformation prediction. The results may lack physical realism and
introduce unnatural deformations in certain parts of the cloth, such
as the sleeves and skirt. The CTSN method [LTY*23], which spe-
cializes in static deformation prediction based on the skeleton,
may exhibit limitations in capturing dynamic effects in its pre-
dicted results. The NeuralClothSim [BME22] tackles the issue of
limited dynamic effects by integrating a sequence-based dynamic
loss function into the unsupervised learning approach. This en-
ables the generation of cloth deformations with more dynamic de-
tails. However, since ground truth data is not available, there might
still be instances of unnatural deformations, especially in the mid-
dle part of the robe and the lower skirt region. The VirtualBone
method [PMJ*22] aims to predict virtual bones for cloth defor-
mation by leveraging the SSDR method for virtual bone extrac-
tion. However, since this method relies on the effectiveness of the
SSDR extraction, the results may exhibit more noticeable unnatu-
ral creases in the skinning effect, when using the same number of
virtual bones as in our method. In contrast to these methods, our ap-
proach excels at capturing dynamic details in clothing deformation,
taking into account the motion sequence of the character. This en-
ables us to generate more realistic and natural cloth deformations,
resulting in an overall higher-quality simulation.

6.2. Quantitative Comparisons

Evaluating the accuracy and fidelity of the predictions of our net-
work in comparison to prior approaches is crucial. It allows us to
assess the performance and effectiveness of our network, and to
determine its advantages over existing methods.

Metrics such as point-to-point distance error and other relevant
metrics can provide quantitative measurements of the similarity be-
tween predicted cloth deformations and ground truth data. Thus we
utilize the following error metrics to evaluate and compare the pre-
diction results of our network with other methods:

Ed =
1
N

N

∑
i=1

∥∥∥xi
p − xi

g

∥∥∥ ,
En =

1
N

N

∑
i=1

arccos

(
(ni

p)
T ni

g∥∥ni
p
∥∥∥∥ni

g
∥∥
)
,

(19)

where xi
p is the predicted position of vertex i. xi

g is the ground truth.
The position evaluation metric Ed measures the discrepancy be-
tween the predicted results and the ground truth by calculating the
point-to-point distance error between xi

p and xi
g. The provided nor-

mal evaluation metric En is used to assess the similarity of the nor-
mal vectors ni

p and ni
g between the predicted mesh and the ground

truth.

We analyze the prediction errors for our method as well as pre-
vious methods using the mentioned evaluation metrics. The results
are summarized in Tab. 3, which presents the mean and variance of
the prediction errors across different methods.

Table 3: We compare the mean and standard deviations of predic-
tion errors between different methods.

Evaluation mean Ed(m) std Ed(m) mean En(◦) std En(◦)

PBNS 7.401E-2 1.068E-2 35.72 7.24
CTSN 3.055E-2 1.055E-2 25.52 3.58

NeuralClothSim 5.429E-2 1.508E-2 32.14 7.41
VirtualBones 3.562E-2 1.509E-2 20.44 4.07
Our Method 5.889E-3 1.891E-3 7.39 1.69

Compared with these metrics across different methods, it can be
concluded that the prediction results of our network have a higher
level of accuracy. The lower mean error and variance values in-
dicate that our method consistently produces more precise predic-
tions.

6.3. Ablation Experiments

To validate our network architecture, we conducted ablation exper-
iments by modifying or removing specific components or stages
within the network.

Fig. 11 provides the results of our ablation Experiments. The
ground truth is shown as a reference in Fig. 11 (a). We then re-
moved the learned joint increments in the static stage, leaving only
the optimization of skinning weights. The prediction results of the
static stage without joint increments are presented in Fig. 11 (b).
It can be observed that without joint increments, the quality of
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Figure 10: Comparison of results between our network and prior methods: The first column is the ground truth of the dynamic cloth. The
second and third columns are the static results of [BME21] and [LTY*23]. The fourth and fifth columns are the dynamic results of [PMJ*22]
and [BME22]. The last column is the result of our method.

the static skinning results deteriorates, indicating the importance
of incorporating learned joint increments for accurate predictions.
Furthermore, we removed the skinning weight increments in the
static stage, using fixed clothing skinning weights instead. The
static skinning results obtained using only fixed skinning weights
are depicted in Fig. 11 (c). It is evident that relying solely on fixed
skinning weights leads to poor static deformation results. Fig. 11
(d) and Fig. 11 (e) showcase the coarse dynamic and wrinkle dy-
namic prediction results of our network, respectively. Our network
effectively adds coarse dynamics and wrinkle dynamics to the static
skinning model, resulting in more realistic and detailed deforma-
tions. Lastly, Fig. 11 (f) illustrates the dynamic deformation pre-
dicted by our network with fixed skinning weights. Although the
predicted results incorporate dynamic information, the presence of
fixed skinning weights introduces artifacts and inaccuracies.

7. Conclusions

We present a three-stage network to predict the dynamic deforma-
tion of cloth dressed on skeleton-based characters. Our method uses
three stages to generate the final prediction. The static stage learns
the static cloth deformation, while the skeleton sequence stage and
the mesh sequence stage learn to add coarse and wrinkle dynamic
components respectively to the static skinning model. The deploy-
ment of our network in Unity showcases its immense potential and
significance across a wide range of applications. By integrating our
network into the Unity environment, we are able to leverage its ca-
pabilities in real-time simulations, virtual reality experiences, video
games, and other interactive multimedia platforms.

Similar to previous learning-based methods, our network also
faces challenges in achieving collision-free predictions. The accu-
rate simulation of cloth interacting with complex objects or char-

acters in real-time is a complex task, and ensuring collision-free
predictions is an ongoing research challenge. To address this issue,
we plan to explore learning-based collision handling methods in
our future work.
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