

Chen XR, Tang M, Li C et al. BADF: Bounding volume hierarchies centric adaptive distance field computation for deformable

objects on GPUs. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 37(3): 731–740 May 2022. DOI

10.1007/s11390-022-0331-x

BADF: Bounding Volume Hierarchies Centric Adaptive Distance
Field Computation for Deformable Objects on GPUs

Xiao-Rui Chen1 (�%a), Min Tang1 (/ ¯), Member, CCF, ACM, Cheng Li1 (o ©)
Dinesh Manocha2, Fellow, ACM, IEEE, and Ruo-Feng Tong1 (Öe¹), Member, CCF

1Laboratory of Geometry, Image and Video Processing Enterprise Intelligent Computing, College of Computer
Science and Technology, Zhejiang University, Hangzhou 310007, China

2Geometric Algorithms for Modeling, Motion, and Animation Laboratory, University of Maryland, Maryland 20742, U.S.A.

E-mail: {chenxiaorui, tang m, licharmy}@zju.edu.cn; dm@cs.unc.edu; trf@zju.edu.cn

Received March 31, 2020; accepted April 2, 2022.

Abstract We present a novel algorithm BADF (Bounding Volume Hierarchy Based Adaptive Distance Fields) for accel-

erating the construction of ADFs (adaptive distance fields) of rigid and deformable models on graphics processing units.

Our approach is based on constructing a bounding volume hierarchy (BVH) and we use that hierarchy to generate an

octree-based ADF. We exploit the coherence between successive frames and sort the grid points of the octree to accelerate

the computation. Our approach is applicable to rigid and deformable models. Our GPU-based (graphics processing unit

based) algorithm is about 20x–50x faster than current mainstream central processing unit based algorithms. Our BADF

algorithm can construct the distance fields for deformable models with 60k triangles at interactive rates on an NVIDIA GTX

GeForce 1060. Moreover, we observe 3x speedup over prior GPU-based ADF algorithms.

Keywords distance field, deformable object, graphics processing unit (GPU), octree, bounding volume hierarchy

1 Introduction

Distance fields are scalar fields that represent the

minimum distance from any point in space to shapes

or objects in the scene. They are typically computed

for a finite number of points in 3D based on uniform

or adaptive sampling. Adaptive distance fields (ADFs)

are sampled according to the local detail and stored

in a spatial hierarchy for efficient processing. They

are used in many applications including motion plan-

ning, proximity queries, surface reconstruction, physics-

based simulation, etc. [1]. Compared with uniform dis-

tance fields (UDFs), ADFs offer many advantages in

terms of quicker query processing and lower storage

overhead.

Distance fields are typically computed by repeatedly

performing distance queries between given points and

the boundary of an object. Each query can be acceler-

ated using hierarchic data structures, e.g., spatial hash-

ing or bounding volume hierarchies (BVHs). For rigid

models, distance fields can be computed once during

a pre-process stage. However, for deformable models,

the distance fields need to be updated or recomputed

on-the-fly, which may be challenging for real-time ap-

plications.

Many techniques have been proposed for faster dis-

tance field computation of rigid and deformable mod-

els that can exploit multiple cores on CPUs and GPUs

(graphics processing units). In particular, the GPU

parallelism can be used to perform the distance queries

for multiple points in parallel [2, 3]. While UDF compu-

tation techniques use simple, regular grid based rep-

resentation, ADF algorithms typically use an octree

structure to store the distance fields. The computation

of multiple data structures in terms of bounding volume

hierarchies and octrees slows down the algorithms. In

practice, distance field computation can be expensive

and may not be fast enough for interactive applications

Regular Paper

This work was supported by the National Key Research and Development Program of China under Grant No. 2018AAA0102703,
and the National Natural Science Foundation of China under Grant Nos. 61972341, 61972342, and 61732015.

©Institute of Computing Technology, Chinese Academy of Sciences 2022

http://dx.doi.org/10.1007/s11390-022-0331-x

732 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

or for the manipulation of deformable models.

Main Result. We present a novel BVH-based algo-

rithm (BADF), to accelerate the distance field compu-

tation on GPUs. Our approach is designed to achieve

higher performance on commodity processors for inte-

ractive applications. We present new techniques to

build integrated data structures and exploit the coher-

ence between successive frames for faster computation.

The major components of our approach include the fol-

lowings.

• BVH-Centric Streamlined Data Structure. We use

a fast BVH-centric algorithm to construct the BVH and

later use the BVH to compute an octree-based ADF.

We first sort the model triangles based on the Morton

code [4] and second, compute a BVH tree using the spa-

tial information of the Morton code. We use the node

relationship within a BVH tree and the location infor-

mation of the Morton code to generate the octree-based

ADF. The BVH tree bounding box is refitted to reduce

the range of distances.

• Acceleration to Distance Queries with Spatial-

Temporal Coherence. Our BADF algorithm records the

nearest triangle on the boundary for each query point

after the distance query for the current frame. The dis-

tance queries are performed according to the octree rep-

resentation. During the next frame, the distance to the

nearest triangle is used as an upper bound and we per-

form efficient pruning for BVH-based culling. This re-

duces the BVH traversal overhead for distance queries.

• Accurate Distance Field by Sorting Query Points.

We avoid redundant distance query calculations of the

octree’s grid points by sorting all the grid points based

on the Morton code of the octree nodes and processing

the sorted grid points for distance queries. Compared

with prior techniques, our approach can be used to com-

pute ADF at a finer resolution with a similar runtime

performance.

Our BVH-centric algorithm first constructs a BVH

with Morton codes. We use this BVH for parallel dis-

tance queries and construct an octree-based ADF. We

utilize the coherence to accelerate the distance queries.

The ADF can be computed at almost interactive rates

for deformable objects.

An overview of our approach is given in Fig. 1.

We implement BADF and highlight its performance on

rigid and deformable models with up to 1M triangles

(see Table 1). We highlight our results using a grid res-

olution of 1283 on an NVIDIA GTX GeForce 1060. For

models of up to 69k triangles, our approach can com-

pute ADF at 46.6 ms per frame (i.e., 20 fps). Compared

with a recent GPU-based algorithm [3], we obtain up to

3x speedup.

Generate

Octree

Construct with

Morton Code
BVH Octree

Query with

Coherency

Distance

Query

Fig.1. BADF algorithm pipeline.

Table 1. ADF Construction Time of Rigid Models on an
NVIDIA GeForce GTX 1060

Benchmark Number of Construction

Triangles (×103) Time (ms)

Andy 34 65.9

Bunny 70 46.6

Armadillo 213 53.6

Dragon 871 88.9

Buddha 1 100 101.3

2 Background

We give a brief overview of the existing distance field

computation algorithm and describe our notation.

2.1 UDF and ADF

Φ(ξ) = s(ξ) inf
ξ∗∈∂B

‖ξ∗ − ξ‖,

s(ξ) =

{
−1, if ξ ∈ B,
1, otherwise.

The distance function is defined as the Euclidian dis-

tance from a given point ξ to the nearest point ξ∗ which

lies on the domain’s boundary ∂B. Signed distance

fields can be further classified as UDFs or ADFs based

on whether they use uniform or adaptive sampling of

a 3D space, respectively [5]. Krayer and Müller [6] used

ray maps and distance transform to construct the uni-

form distance field, and their recent work has raised

the distance field construction to about 200 ms for 70k

triangles. However, using our algorithm, we can reduce

the construction time to about 50 ms. ADF algorithms

subdivide the space adaptively into an octree and only

store the distance to the object scene at the octree’s

nodes. Compared with the uniform sampling of UDFs,

ADF algorithms are superior in terms of computation

time and memory overhead.

Xiao-Rui Chen et al.: BADF Computation for Deformable Objects on GPUs 733

ADFs have been used for various applications,

including ray tracing [7], collision detection [8], sur-

face reconstruction [9], motion planning [10], visuali-

zation [11], and geometric modeling [12].

2.2 ADF Construction

The construction of ADFs is faster than that of

UDFs. However, current ADF computation algorithms

are unable to compute distance fields at interactive

rates for complex deformable models. The main chal-

lenges are computing the octree and performing dis-

tance queries for each grid point of the octree.

Different techniques have been proposed to acceler-

ate the ADF computation by exploiting the parallelism

of the GPUs. Bastos and Celes [13] presented a method

to compute ADFs on a GPU and store the octree nodes

using a hash-based structure. Liu and Kim [3] described

a method to compute distance fields on GPUs. They

used the BVH as an acceleration structure for distance

queries and constructed it in a top-down manner. All

these methods work well on rigid models and do not

offer interactive performance for deformable models.

2.3 Voronoi Diagrams and Distance Fields

Distance fields are closely related to the generalized

Voronoi diagram (GVD) computation. A GVD divides

the 3D space into generalized Voronoi cells based on

the primitives closest to each point in the space. Hoff

et al. [10] proposed a fast method to compute the ap-

proximate GVD using interpolation-based polygon ras-

terization hardware. With the continuous development

of GPU architectures and general-purpose programma-

bility, many faster techniques have been proposed for

GVD computation [14–18]. The GVD can be regarded

as a subset of the locus of distance field critical points.

We can calculate the GVD based on the distance field

or we can use an expansion algorithm to calculate the

distance field in the 3D space based on the GVD.

2.4 Octree Generation

There is considerable work on octree computation,

including bottom-up and top-down strategies.

Bottom-up Algorithms. Zhou et al. [19], Karras [20],

and Bédorf et al. [21] presented techniques to compute

octrees. Many prior methods are based on bottom-up

approaches and Morton codes. Zhou et al. [19] used the

resulting octree for point cloud reconstruction, thereby

point cloud reconstruction needs to preserve the ver-

tices, edges, and faces during octree computation. For

a given level, Bédorf et al. [21] masked each particle and

grouped the results with a parallel compaction algo-

rithm. The masking and grouping procedures are re-

peated for every single level until all the particles are

assigned to leaf nodes or the maximal depth of the tree

is reached. Karras [20] constructed the BVH in para-

llel and detected all the edges and generated an octree

based on the information of the edges. On the basis of

the technique by Karras [20], Morrical and Edwards [22]

further figured out the relationship between multiple

objects. For those conflict cells containing multiple ob-

jects, Morrical and Edwards [22] further differentiated

by their parallel quadtree construction algorithm. Our

approach improves Karras’ LBVH method [20] for octree

computation.

Top-down Algorithms. Zhou et al. [23] used a top-

down construction in another study about the KD-tree

construction. However, using such parallel constructs

on the GPU makes most of the computation cores idle,

especially at the root of the tree. Liu and Kim [3] used a

top-down approach to reduce the idle time of a proces-

sor core and instead compute multiple BVHs. In con-

trast to these methods, our approach is better suited to

exploiting the multiple cores on the GPU.

2.5 Distance Queries

The time complexity of calculating the distance field

algorithm is O(m×n), where m is the number of query

points, and n is the time taken for each query point.

Many techniques use BVHs to reduce the query time.

Other methods tend to reduce the number of query

points. The ADF formulation proposed by Frisken et

al. [5] reduces a large number of sampling points by us-

ing an adaptive grid. Many other techniques have been

proposed to accelerate the distance field computation.

• Exact Distance Field Around an Object. Sramek

and Kaufmann [24] presented a method to compute dis-

tance field shells, which only calculates the distance

field near the surface of the object. This method can

reduce the sampling points by half, but it cannot be

applied everywhere in the 3D space.

• Level Sets for Propagating Accurate Distances.

Breen et al. [25] and Kimmel [26] proposed level sets for

propagating accurate distances throughout the volume.

Breen et al. [25] first calculated the closest points for

the narrow band and zero set, and then used the fast

marching method to compute the closest point.

• Different Types of Query Points. Yin et al. [27] di-

vided the sampling points into three types: the points

having triangles at the lowest level, the points on the

734 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

boundary of the lowest level nodes but without trian-

gles, and the points at the center of the non-lowest-level

nodes siblings. This method can reduce a large num-

ber of sampling points, but computes an approximate

distance for some query points.

3 BADF: Adaptive Distance Field Generation

In this section, we present our novel algorithm for

generating adaptive distance fields. The overall pipeline

is highlighted in Fig.1.

3.1 BVH Generation

Our BVH generation algorithm (as shown in Fig.2)

is based on the GPU algorithms proposed by Karras [20].

Karras’s algorithm can construct a BVH fully in para-

llel according to the Morton code. The Morton code

is a way of mapping quantized n-dimensional vectors

into integer scalar values. We can sort the points in

space according to Morton code. The Morton code for

a given point contained within the 3D unit cube is de-

fined by the bit string X0Y0Z0X1Y1Z1..., where the x

coordinate of the point is represented as 0.X0X1X2...,

and similarly for the y and z coordinates. The Morton

code of a given point and the coordinates of this point

can be freely converted. We extend Karras’ method [20]

so that it can be directly used to generate the oc-

tree. After we sort all the leaf nodes that correspond

one-to-one with the triangle positions in the lexico-

graphic order, the range occupied by leaf nodes covered

δ=0

δ=2(00) δ=1(1)

δ=2(11)δ=3(000) δ=4(0010)

δ=4(1100)

0

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

1

1

1

0

0

0

1

0

1

1

0

0

1

1

0

1

1

2

2

3

3

4

4

5

5

6

6 7

Fig.2. BVH generation. We highlight our parallel BVH compu-
tation algorithm. The range of keys covered by each node is
indicated by the horizontal bar. The split position, correspond-
ing to the first bit that differs between the keys, is indicated by
a red circle. We also compute δ for each internal node, which is
used for octree generation.

by each internal node can be represented as a linear

range [i, j]. We record δ(i, j) of each node, which de-

notes the length of the longest common prefix between

Morton code keys ki and kj . For any m,n ∈ [i, j] ,

δ(m,n) > δ(i, j). We can calculate δ of each node by

comparing the Morton code keys of its leftmost and

rightmost leaf nodes. δ is used for octree generation.

3.2 Octree Generation

After constructing the BVH, we use the parent-

child node inheritance relationship and the spatial

information from the relationship to generate the oc-

tree, as shown in Fig. 3. On the original BVH tree,

if δ of the node can be divided by 3, it means that

this node is an internal node of the octree, e.g., if

δi = 3, it implies that nodei is the child of the root

node in the octree. For a parent node with a pre-

fix of length δparent and a child node with a prefix of

length δchild, if δchild/3 − δparent/3 > 0, there is an

octree node that can be generated between the child

and parent nodes in the BVH tree. We first set up

a maximum octree resolution controlled by the user

as an input parameter. Based on the resolution, we

determine the bit length of the Morton code of the

δ=0

δ=2(00) δ=1(1)

δ=2(11)δ=3(000) δ=4(0010)

δ=4(1100)

0

0

0

0

0

1

1

1

1

1 2

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

6

6

6 7

5 6 7

7

(b)

(a)

Fig.3. Octree generation. We traverse the BVH in a top-down
manner, and check if we can insert the octree node on its left/-
right children. Our combination of BVH and octree results in a
faster computation. (a) Finding the leaf node of the octree. (b)
Building the octree in parallel.

Xiao-Rui Chen et al.: BADF Computation for Deformable Objects on GPUs 735

octree leaf node. We traverse the BVH in a top-down

manner, and check if we can insert the traversed octree

node on the left or right children of the node. If so, we

can record the Morton code prefix for this node. The

detailed algorithm is shown in Algorithm 1. We tra-

verse the BVH in a top-down manner, and check if we

can insert the octree node on its left/right children.

Algorithm 1. Octree Generation

1: procedure Octree Generation

2: . Traverse the BVH

3: lvnumi ← the number of nodes in level i

4: d← max depth of octree

5: for Ni in each BVH node in parallel do

6: δi ← δ of Ni

7: δl ← δ of Ni.LeftChild

8: δr ← δ of Ni.RightChild

9: if δl/3− δi/3 > 0 then

10: if δl/3 = d then

11: Add to octree leaf node queue Q

12: if δr/3− δi/3 > 0 then

13: if δr/3 = d then

14: Add to octree leaf node queue Q

15: . Now generate the octree

16: for Li in each queue Q in parallel do

17: for k = d:1 do

18: if the k-th ancestor of Li has not been initialized

then

19: Initialize the k-th ancestor of Li

3.3 BVH Refitting

To facilitate faster distance queries, we need to re-

fit the constructed BVH. This is necessary because the

BVH is obtained by the Morton code and the bound-

ing volume of each node corresponds to the sub-space,

which may not be the tightest bounding volume of all

its triangles. In the process of refitting a BVH, we

use a bottom-up approach and recalculate the bounding

boxes of each node in parallel in the GPU. Specifically,

we first refit all the leaf nodes in parallel, and then ite-

ratively refit all the internal nodes with children nodes

that have already been refitted. In practice, this para-

llel algorithm is quite efficient on GPU, and BVH refit-

ting takes only approximately 0.3%–0.8% of the overall

ADF construction time.

3.4 Query Reduction

After we compute an octree, we perform a distance

query on each octree grid point to construct the final

distance field. However, these grid points are repeated

for adjacent octree nodes. For each octree node, we

need to perform eight queries for its eight corners ac-

cordingly. Most of these queries are redundant since

these corners are often shared by many octree nodes.

Therefore, we assign each corner a Morton code, and

use the code to ensure that there is only one query for

each corner. In practice, we can reduce the number of

queries by up to 2x–3x.

3.5 Distance Queries

We reuse BVH to speed up distance queries on the

octree corners, which addresses a major efficiency bot-

tleneck in our algorithm. The detailed algorithm is

highlighted in Algorithm 2. We use BVH to speed up

distance queries on the octree corners. As shown in

Algorithm 2, we perform all the queries in parallel on

the GPU (lines 25–45). Each GPU thread works on a

query point Ci. In each thread, we traverse the BVH in

a top-down manner, and store all the active BVH nodes

into a stack S. We process all the BVH nodes in S until

it becomes empty (lines 31–43). For each BVH node,

if its left or right child is a leaf node, we compute the

distance between the triangle in the child and Ci and

update the minimum distance minDist. After all the

BVH nodes in S are processed, we compute minDist

and its corresponding triangle minItem (line 45) for

Ci.

We also utilize spatial-temporal coherence to accel-

erate distance queries for deformable objects. Specifi-

cally, we record the triangle(s) with the minimum dis-

tance (the purple one in Fig.4) to the query point in the

last frame and use its distance at the current frame as

the initial minimum distance for the new query. Storing

distances from the last frame and using them to com-

pute upper bounds accelerate the computation of ADF

by 1.5x for deformable models.

3.6 Sign Calculation

We use the angle weighted pseudonormal

algorithm [28] to calculate the normal. This algorithm

calculates the pseudo-normal by assigning the normal

deflection by calculating the angular weights corre-

sponding to the faces adjacent to the vertices. The

sign of the query point is judged by the product of

the pseudo-normal direction of the query point and the

nearest point.

736 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

Algorithm 2. Distance Query

1: . Perform distance query between a triangle and a point
2: procedure DistQueryTP(Triangle(a, b, c), Point p)
3: . Calculate the distance from p to three corners
4: dist0 = distance(a, p)
5: dist1 = distance(b, p)
6: dist2 = distance(c, p)
7: . Calculate the distance from p to three edges
8: dist3 = distance(ab, p)
9: dist4 = distance(bc, p)

10: dist5 = distance(ca, p)
11: . Calculate the distance from the point to the triangle

plane
12: dist6 = distance(∆abc, p)
13: . Get the maximum distance
14: return min(disti) for i ∈ [0, 6]

15:
16: . Perform distance query between a bounding box and a

point
17: procedure DQueryBP(Box(bi, i ∈ [0, 7]), Point p)
18: . Calculate the distance from the point to the eight

vertices
19: disti = distance(bi, p) for i ∈ [0, 7]
20: . Get the maximum distance
21: return min(disti) for i ∈ [0, 7]

22:
23: . Perform distance query for the octree corners
24: procedure Distance Query(Octree Corners Ci, BVH B)
25: for query point Ci in parallel do
26: Create local stack S
27: . Use coherency for deformable objects
28: minItem = T ′

i
29: minDist = DQueryTP (minItem,Ci)
30: S.push(B.root())
31: while do S.emty() == false
32: curNode = S.pop()
33: if curNode.rightChild().isleaf() then
34: dist = DqueryTP (curNode.rightItem(), Ci)
35: if dist < minDist then
36: minDist← dist
37: minItem← curNode.rightItem()

38: else
39: dist← DQueryBT (curNode.rightBox(), Ci)
40: if dist < minDist then
41: S.push(curNode.rightChild())

42: . Same to do with the left child
43: Process curNode.leftChild()

44: . Get the maximum distance
45: Record minDist and minItem for Ci

Query Point

Triangle in Previous

Frame

Triangle in This Frame

Neraest Triangle in

Previous Frame

Upper Bound in This Frame

Fig.4. Utilizing spatial-temporal coherence for distance query.
We record the triangle with the minimum distance (the purple
one) to the query point during the last frame. The distance to
this triangle is used as an upper bound during the next query
and reduces the overhead of tree traversal.

4 Results and Comparison

In this section, we describe our implementation and

compare the performance with the performance of prior

methods.

4.1 Implementation

We implemented our ADF construction algorithm

on an NVIDIA GeForce GTX 1060 (with 1 280 cores

at 1.5 GHz and 6 GB memory). Our implementa-

tion used CUDA toolkit 9.1 and Visual Studio 2013

as the underlying development environment. We used

a standard PC (Windows 7 Ultimate 64 bits/Intel I7

CPU@4G Hz/8 G RAM) to evaluate performance. We

performed single-precision floating-point arithmetic for

all the computations on the GPU. We also integrated

our algorithm into a GPU-based cloth simulation sys-

tem, I-Cloth [29], where the ADF computation is used

for collision handling. We evaluated our BADF algo-

rithm for different resolution distance fields for multiple

rigid and deformable models.

4.2 Benchmarks

The construction time of our algorithm for different

rigid models is shown in Table 1. As shown in the ta-

ble, our algorithm is capable of constructing ADF for

models with several hundreds of thousands of triangles

within tens of milliseconds on a commodity GPU.

We used two benchmarks (andy and sphere) with

deforming objects for evaluation, as shown in Fig.5. For

the two benchmarks, Andy and Sphere, we observed

significant speedup on ADF construction by using the

temporal-spatial coherency between animation frames.

We observed improved performance after the first few

frames due to coherence. We replaced our distance field

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

m
s)

Time of Frame

Sphere Andy

Fig.5. ADF computation of deformable models. The horizontal
axis of the graph represents the current frame of the animation
frame sequence, and the vertical axis represents the time required
to build the ADF of the current frame.

Xiao-Rui Chen et al.: BADF Computation for Deformable Objects on GPUs 737

algorithm with collision detection and collision response

in the I-Cloth cloth simulation system [29]. We used

ADF to compute the distance between the cloth and

an object and used ADF to add penalty forces on the

cloth nodes to compute the separation forces, which are

a function of the distance.

The first deformable benchmark used for evalua-

tion corresponds to Andy: a boy is performing Kungfu.

Andy is a human body model with 33k triangles and

the jacket of Andy has 22k triangles. In this scenario,

the overall cloth simulation can run at approximately 7

FPS–10 FPS. Another benchmark used is the Sphere-

cloth: a ball moving forward and backward is interact-

ing with a cloth hanging with two corners. This bench-

mark has a piece of the rectangle cloth with 16k trian-

gles and a sphere with 1k triangles. Our cloth simula-

tion (with ADF computation) can run at approximately

10 FPS–13 FPS. As shown in Fig.5, our algorithm runs

pretty fast for all the frames except the 1st frame. This

highlights the benefit of our algorithm in terms of us-

ing the frame-to-frame coherence. We used the model

Amadillo, Bunny, Buddha and Dragon to show the ef-

fect of our algorithm in Fig.6.

4.3 Comparison

Prior GPU-Based ADF Construction Algorithm.

We compared our results with those of [3]. Since

the source code implementation of Liu and Kim’s

algorithm [3] is not available, we estimated its perfor-

mance on GTX 1060 based on the reported perfor-

mance data and the number of GPU cores. We ob-

served that BADF is up to 3x faster and provides an

average speedup of 1.9x, as shown in Fig.7.

Our algorithm shows good performance improve-

ment because we used a more parallel GPU-based algo-

rithm to construct the octrees and BVH trees. Liu and

Kim [3] constructed an octree and a BVH using a top-

down construction method, thereby the time comple-

xity of the algorithm is O(nlogn). In contrast, we

used the parallel construction method, thereby the time

complexity of our ADF construction algorithm is O(n).

Therefore, as the number of triangles increases, we ob-

served better performance improvement in these bench-

marks using our algorithm.

Rigid Models vs Deformable Objects. Our algorithm

is better suited to constructing dynamic or time-varying

distance fields (e.g., for deforming objects). Our ap-

proach can exploit the frame-to-frame coherency be-

tween the frames. The use of coherence can provide

1.5x speedup, on average. We intercepted part of the

animation frames to show the algorithm’s construction

effect on deformable objects in Fig.8.

Different ADF Resolutions. We also evaluated the

performance of our ADF construction algorithm by

varying specified resolutions. As shown in Fig. 9, as

the resolutions increases, the ADF construction time

slows down accordingly. As the resolution increases, the

ADF computation time slows down accordingly. BADF

can compute the distance fields at interactive rates for

higher levels of the octree.

5 Conclusions

We presented a GPU-based ADF construction al-

gorithm for rigid or deformable objects. We also inte-

grated it into an interactive cloth simulation system to

compute proximity constraints and collision response.

The main data structure of our algorithm is a tight

BVH that is constructed in parallel on GPU. BVH is

Fig.6. ADF construction results of rigid models for (a) Armadillo, (b) Bunny, (c) Buddha and (d) Dragon.

738 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

used both in octree generation and in the process of

speeding up distance queries on the octree nodes. We

also utilized frame-to-frame coherence to accelerate the

queries. Our algorithm can compute ADF for complex

deformable models at interactive rates on commodity

GPUs and offers up to 3x speedup over prior methods.

Our approach has some limitations. First, the qua-

lity and the resolution of ADF depend on a user-

specified resolution and shape of the models. Second,

the benefit of frame-to-frame coherence is observed af-

ter the first few frames.

0

50

100

150

200

250

300

350

Bunny Armadillo Buddha DragonC
o
m

p
u
ta

io
n
 T

im
e
 (

m
s)

Model of Benchmarks

Our Method

Liu and Kim's Method[3]

Fig.7. Performance comparison with [3]: we observe up to 3x
speedups among all the benchmarks. These speedups are ob-
tained due to better parallelism, reuse of BVH, frame-to-frame
coherence, and culling of redundant queries.

(b)

(a)

Fig.8. Benchmarks for deformable models. We use two complex benchmarks, (a) Andy and (b) Sphere, and our ADF algorithm can
compute distance fields at 15 FPS–22 FPS.

(b)(a) (c) (d)

Fig.9. Performance with different resolutions: depth represents the maximum degree of subdivision during the construction of the
octree. The depth field resolutions of 5, 6, 7, and 8 are 323, 643, 1283, and 2563, respectively. (a) depth = 522.5 ms. (b) depth =
623.3 ms. (c) depth = 725.9 ms. (d) depth = 836.4 ms.

Xiao-Rui Chen et al.: BADF Computation for Deformable Objects on GPUs 739

There are many avenues for future research. Aim-

ing at overcoming the limitations, we would like to ex-

tend our algorithm from using a single GPU to multiple

GPUs for interactive distance field computation on de-

formable models with millions of triangles.

References

[1] Jones M W, Bærentzen A, Srámek M. 3D distance fields: A

survey of techniques and applications. IEEE Transactions

on Visualization and Computer Graphics, 2006, 12(4): 581-

599. DOI: 10.1109/TVCG.2006.56.

[2] Jones M W, Chen M. A new approach to the construction

of surfaces from contour data. Computer Graphics Forum,

1994, 13(3): 75-84. DOI: 10.1111/1467-8659.1330075.

[3] Liu F, Kim Y J. Exact and adaptive signed distance fields

computation for rigid and deformable models on GPUs.

IEEE Transactions on Visualization and Computer Graph-

ics, 2014, 20(5): 714-725. DOI: 10.1109/TVCG.2013.268.

[4] Morton G M. A Computer Oriented Geodetic Data Base

and a New Technique in File Sequencing. IBM Ltd., 1966.

[5] Frisken S F, Perry R N, Rockwood A P, Jones T

R. Adaptively sampled distance fields: A general rep-

resentation of shape for computer graphics. In Proc.

the 27th Annual Conference on Computer Graphics

and Interactive Techniques, July 2000, pp.249-254. DOI:

10.1145/344779.344899.

[6] Krayer B, Müller S. Generating signed distance fields on

the GPU with ray maps. The Visual Computer, 2019,

35(6/7/8): 961-971. DOI: 10.1007/s00371-019-01683-w.

[7] Jamrǐska O. Interactive ray tracing of distance fields. In

Proc. the 14th Central European Seminar on Computer

Graphics, May 2010.

[8] Mitchell N, Aanjaneya M, Setaluri R, Sifakis E. Nonmani-

fold level sets: A multivalued implicit surface representation

with applications to self-collision processing. ACM Trans-

actions on Graphics, 2015, 34(6): Article No. 247. DOI:

10.1145/2816795.2818100.

[9] Calakli F, Taubin G. Ssd: Smooth signed distance surface

reconstruction. Computer Graphics Forum, 2011, 30(7):

1993-2002. DOI: 10.1111/j.1467-8659.2011.02058.x.

[10] Hoff K E, Keyser J, Lin M, Manocha D, Culver T. Fast

computation of generalized Voronoi diagrams using graph-

ics hardware. In Proc. the 26th Annual Conference on Com-

puter Graphics and Interactive Techniques, August 1999,

pp.277-286. DOI: 10.1145/311535.311567.

[11] Kerwin T, Hittle B, Shen H W, Stredney D, Wiet G.

Anatomical volume visualization with weighted distance

fields. In Proc. Eurographics Workshop on Visual Com-

puting for Biomedicine, July 2010, pp.117-124. DOI:

10.2312/VCBM/VCBM10/117-124.

[12] Frisken S F, Perry R N. Designing with distance fields. In

Proc. the 2006 ACM SIGGRAPH International Conference

on Computer Graphics and Interactive Techniques, July 30-

August 3, 2006, pp.60-66. DOI: 10.1145/1185657.1185675.

[13] Bastos T, Celes W. GPU-accelerated adaptively sampled

distance fields. In Proc. the 2008 IEEE International

Conference on Shape Modeling and Applications, June

2008, pp.171-178. DOI: 10.1109/SMI.2008.4547967.

[14] Cao T T, Tang K, Mohamed A, Tan T S. Parallel banding

algorithm to compute exact distance transform with the

GPU. In Proc. the 2010 ACM SIGGRAPH Symposium on

Interactive 3D Graphics and Games, Feb. 2010, pp.83-90.

DOI: 10.1145/1730804.1730818.

[15] Fischer I, Gotsman C. Fast approximation of high-order

Voronoi diagrams and distance transforms on the GPU.

Journal of Graphics Tools, 2006, 11(4): 39-60. DOI:

10.1080/2151237X.2006.10129229.

[16] Hsieh H H, Tai W K. A simple GPU-based approach for 3D

Voronoi diagram construction and visualization. Simulation

Modelling Practice and Theory, 2005, 13(8): 681-692. DOI:

10.1016/j.simpat.2005.08.003.

[17] Rong G, Tan T S. Variants of jump flooding algorithm

for computing discrete Voronoi diagrams. In Proc. the

4th International Symposium on Voronoi Diagrams in

Science and Engineering, July 2007, pp.176-181. DOI:

10.1109/ISVD.2007.41.

[18] Wu X, Liang X, Xu Q, Zhao Q. GPU-based feature preserv-

ing distance field computation. In Proc. the 2008 Interna-

tional Conference on Cyberworlds, Sept. 2008, pp.203-208.

DOI: 10.1109/CW.2008.62.

[19] Zhou K, Gong M, Huang X, Guo B. Data-parallel octrees

for surface reconstruction. IEEE Transactions on Visuali-

zation and Computer Graphics, 2011, 17(5): 669-681. DOI:

10.1109/TVCG.2010.75.

[20] Karras T. Maximizing parallelism in the construction of

BVHs, octrees, and k-d trees. In Proc. the 4th Eurograph-

ics Conference on High-Performance Graphics, June 2012,

pp.33-37. DOI: 10.2312/EGGH/HPG12/033-037.

[21] Bédorf J, Gaburov E, Zwart S P. A sparse octree gravita-

tional N -body code that runs entirely on the GPU proces-

sor. Journal of Computational Physics, 2012, 231(7): 2825-

2839. DOI: 10.1016/j.jcp.2011.12.024.

[22] Morrical N, Edwards J. Parallel quadtree construction on

collections of objects. Computers & Graphics, 2017, 66:

162-168. DOI: 10.1016/j.cag.2017.05.024.

[23] Zhou K, Hou Q, Wang R, Guo B. Real-time KD-

tree construction on graphics hardware. ACM Transac-

tions on Graphics, 2008, 27(5): Article No. 126. DOI:

10.1145/1409060.1409079.

[24] Sramek M, Kaufman A E. Alias-free voxelization of

geometric objects. IEEE Transactions on Visualization

and Computer Graphics, 1999, 5(3): 251-267. DOI:

10.1109/2945.795216.

[25] Breen D E, Mauch S, Whitaker R T. 3D scan conversion

of CSG models into distance volumes. In Proc. IEEE Sym-

posium on Volume Visualization, Oct. 1998, pp.7-14. DOI:

10.1109/SVV.1998.729579.

[26] Kimmel R. Fast marching methods for computing dis-

tance maps and shortest paths. Technical Report, Lawrence

Berkeley National Laboratory, 1996. https://escholarship.

org/uc/item/7kx079v5, Nov. 2021.

[27] Yin K, Liu Y, Wu E. Fast computing adaptively sampled

distance field on GPU. In Proc. the 19th Pacific Conference

on Computer Graphics and Applications, Sept. 2011. DOI:

10.2312/PE/PG/PG2011short/025-030.

[28] Ségonne F, Pacheco J, Fischl B. Geometrically accurate

topology-correction of cortical surfaces using nonseparat-

ing loops. IEEE Transactions on Medical Imaging, 2007,

26(4): 518-529. DOI: 10.1109/TMI.2006.887364.

https://doi.org/10.1109/TVCG.2006.56
https://doi.org/10.1111/1467-8659.1330075
https://doi.org/10.1109/TVCG.2013.268
https://doi.org/10.1145/344779.344899
https://doi.org/10.1007/s00371-019-01683-w
https://doi.org/10.1145/2816795.2818100
https://doi.org/10.1111/j.1467-8659.2011.02058.x
https://doi.org/10.1145/311535.311567
https://doi.org/10.2312/VCBM/VCBM10/117-124
https://doi.org/10.1145/1185657.1185675
https://doi.org/10.1109/SMI.2008.4547967
https://doi.org/10.1145/1730804.1730818
https://doi.org/10.1080/2151237X.2006.10129229
https://doi.org/10.1016/j.simpat.2005.08.003
https://doi.org/10.1109/ISVD.2007.41
https://doi.org/10.1109/CW.2008.62
https://doi.org/10.1109/TVCG.2010.75
https://doi.org/10.2312/EGGH/HPG12/033-037
https://doi.org/10.1016/j.jcp.2011.12.024
https://doi.org/10.1016/j.cag.2017.05.024
https://doi.org/10.1145/1409060.1409079
https://doi.org/10.1109/2945.795216
https://doi.org/10.1109/SVV.1998.729579
https://doi.org/10.2312/PE/PG/PG2011short/025-030
https://doi.org/10.1109/TMI.2006.887364

740 J. Comput. Sci. & Technol., May 2022, Vol.37, No.3

[29] Tang M, Wang T T, Liu Z Y, Tong R F, Manocha

D. I-Cloth: Incremental collision handling for GPU-

based interactive cloth simulation. ACM Transaction

on Graphics, 2018, 37(6): Article No. 204. DOI:

10.1145/3272127.3275005.

Xiao-Rui Chen received his B.S.

degree in computer science from Shan-

dong University, Jinan, in 2016. He is

currently a Ph.D. candidate in Zhejiang

University, Hangzhou. His current

research interests include clothes

simulation, GPU-algorithm, collision

detection, and collision response.

Min Tang received his B.S., M.S.,

and Ph.D. degrees from Zhejiang Uni-

versity, Hangzhou, in 1994, 1996 and

1999, respectively. He is a professor

of the College of Computer Science

and Technology, Zhejiang University,

Hangzhou. From June 2003 to May

2004, he was a visiting scholar at

Wichita State University, Wichita. Between April 2007

and April 2008, and September 2016 and April 2017, he

was a visiting scholar at the University of North Carolina

at Chapel Hill. His research interests include collision

detection/handling, cloth simulation, and GPU-based

computation acceleration.

Cheng Li received his M.S. degree

in computer science from Zhejiang

University, Hangzhou, in 2016. He

is currently working at Tencent. His

current research interests include

clothes simulation, GPU-algorithm,

collision detection, and collision re-

sponse.

Dinesh Manocha received his

B.T. degree in computer science and

engineering from the Indian Institute

of Technology, Delhi, in 1987, and his

M.S. and Ph.D. degrees in computer

science at the University of California at

Berkeley in 1990 and 1992, respectively.

His research interests include geometric

computing, interactive computer graphics, physics-based

simulation and robotics. He has published more than 280

papers in these areas. He has received more than 11 Best

Paper and Panel Awards at the ACM SuperComputing,

ACM Multimedia, ACM Solid Modeling, Pacific Graphics,

IEEE VR, IEEE Visualization, ACM SIGMOD, ACM

VRST, CAD, I/ITSEC and Eurographics Conferences. He

was selected as an ACM Fellow in 2009 “for contributions

to geometric computing and applications to computer

graphics, robotics and GPU computing”, and is also an

AAAS Fellow and an IEEE Fellow.

Ruo-Feng Tong received his

B.S. degree from Fudan University,

Shanghai, in 1991, and his Ph.D. degree

from Zhejiang University, Hangzhou, in

1996. He is a professor of the College

of Computer Science and Technology,

Zhejiang University, Hangzhou. From

June 1999 to May 2001, he was a

visiting scholar at Hiroshima University, Hiroshima. His

current research interests include virtual reality, computer

vision, and artificial intelligence-based assisted medical

diagnosis.

https://doi.org/10.1145/3272127.3275005

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY

Volume 37, Number 3, May 2022

Content

Special Section on Self-Learning with Deep Neural Networks

Preface . Min-Ling Zhang, Xiu-Shen Wei, and Gao Huang (505)

Connecting the Dots in Self-Supervised Learning: A Brief Survey for Beginners .
. Peng-Fei Fang, Xian Li, Yang Yan, Shuai Zhang, Qi-Yue Kang, Xiao-Fei Li, and Zhen-Zhong Lan (507)

Self-Supervised Task Augmentation for Few-Shot Intent Detection .
. Peng-Fei Sun, Ya-Wen Ouyang, Ding-Jie Song, and Xin-Yu Dai (527)

Self-Supervised Music Motion Synchronization Learning for Music-Driven Conducting Motion Generation.
. Fan Liu, De-Long Chen, Rui-Zhi Zhou, Sai Yang, and Feng Xu (539)

Special Section of CVM 2022

Preface . Shi-Min Hu, Paul L. Rosin, and Tian-Jia Shao (559)

A Comprehensive Review of Redirected Walking Techniques: Taxonomy, Methods, and Future Directions
. Yi-Jun Li, Frank Steinicke, and Miao Wang (561)

Probability-Based Channel Pruning for Depthwise Separable Convolutional Networks .
. Han-Li Zhao, Kai-Jie Shi, Xiao-Gang Jin, Ming-Liang Xu, Hui Huang, Wang-Long Lu, and Ying Liu (584)

A Comparative Study of CNN- and Transformer-Based Visual Style Transfer .
. Hua-Peng Wei, Ying-Ying Deng, Fan Tang, Xing-Jia Pan, and Wei-Ming Dong (601)

Local Homography Estimation on User-Specified Textureless Regions .
. Zheng Chen, Xiao-Nan Fang, and Song-Hai Zhang (615)

CGTracker: Center Graph Network for One-Stage Multi-Pedestrian-Object Detection and Tracking .
. Xin Feng, Hao-Ming Wu, Yi-Hao Yin, and Li-Bin Lan (626)

Learn Robust Pedestrian Representation Within Minimal Modality Discrepancy for Visible-Infrared Person Re-Identification
. Yu-Jie Liu, Wen-Bin Shao, and Xiao-Rui Sun (641)

Element-Arrangement Context Network for Facade Parsing Yan Tao, Yi-Teng Zhang, and Xue-Jin Chen (652)

ARSlice: Head-Mounted Display Augmented with Dynamic Tracking and Projection .
. Yu-Ping Wang, Sen-Wei Xie, Li-Hui Wang, Hongjin Xu, Satoshi Tabata, and Masatoshi Ishikawa (666)

Regular Paper

NfvInsight: A Framework for Automatically Deploying and Benchmarking VNF Chains. .
. Tian-Ni Xu, Hai-Feng Sun, Di Zhang, Xiao-Ming Zhou, Xiu-Feng Sui, Sa Wang, Qun Huang, and Yun-Gang Bao (680)

Extracting Variable-Depth Logical Document Hierarchy from Long Documents: Method, Evaluation, and Application
. Rong-Yu Cao, Yi-Xuan Cao, Gan-Bin Zhou, and Ping Luo (699)

6D Object Pose Estimation in Cluttered Scenes from RGB Images. .
. Xiao-Long Yang, Xiao-Hong Jia, Yuan Liang, and Lu-Bin Fan (719)

BADF: Bounding Volume Hierarchies Centric Adaptive Distance Field Computation for Deformable Objects on GPUs. . . .
. Xiao-Rui Chen, Min Tang, Cheng Li, Dinesh Manocha, and Ruo-Feng Tong (731)

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
5O�Å�ÆEâÆ�6

Volume 37 Number 3 2022 (Bimonthly, Started in 1986)

Indexed in: SCIE, Ei, INSPEC, JST, AJ, MR, CA, DBLP

Edited by:

THE EDITORIAL BOARD OF JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY

Zhi-Wei Xu, Editor-in-Chief, P.O. Box 2704, Beijing 100190, P.R. China

Managing Editor: Feng-Di Shu E-mail: jcst@ict.ac.cn http://jcst.ict.ac.cn Tel.: 86-10-62610746

Copyright ©Institute of Computing Technology, Chinese Academy of Sciences 2022

Sponsored by: Institute of Computing Technology, CAS & China Computer Federation

Supervised by: Chinese Academy of Sciences

Undertaken by: Institute of Computing Technology, CAS

Published by: Science Press, Beijing, China

Printed by: Beijing Baochang Color Printing Co. Ltd

Distributed by:

China: All Local Post Offices

Other Countries: Springer Nature Customer Service Center GmbH, Tiergartenstr. 15, 69121 Heidelberg, Germany

Available Online: https://link.springer.com/journal/11390

ISÚ�rÒ: CN11-2296/TP ISeu�Ò: 2-578 RMB U160.00

	JCST COVER 2022-37-3.pdf
	2022-3-17-0331
	1 Introduction
	2 Background
	2.1 UDF and ADF
	2.2 ADF Construction
	2.3 Voronoi Diagrams and Distance Fields
	2.4 Octree Generation
	2.5 Distance Queries

	3 BADF: Adaptive Distance Field Generation
	3.1 BVH Generation
	3.2 Octree Generation
	3.3 BVH Refitting
	3.4 Query Reduction
	3.5 Distance Queries
	3.6 Sign Calculation

	4 Results and Comparison
	4.1 Implementation
	4.2 Benchmarks
	4.3 Comparison

	5 Conclusions

	2022-3ml.pdf

