
MidSurfer: Efficient Mid-surface Abstraction from Variable Thin-walled Models

Li Yea, Xinhang Zhoua, Peng Fana, Ruofeng Tonga, Hailong Lic, Peng Dua, Min Tanga,b,∗

aCollege of Computer Science and Technology, Zhejiang University, Hangzhou, 310007, China
bZhejiang Sci-Tech University, Hangzhou, 310018, China

cShenzhen Poisson Software Co., Ltd., Shenzhen, 518129, China

Abstract

This paper addresses the challenge of efficiently abstracting mid-surfaces from complex variable thin-walled models, a critical
task in computer-aided design (CAD) and finite element analysis (FEA) for simplifying thin-walled structures. Traditional methods
often require manual specification of pairing faces, which can be time-consuming and error-prone. Alternatively, automatic face
pairing methods fail to meet the actual needs of variable thin-walled models, resulting in the accumulation of topological errors.
Additionally, existing algorithms struggle to extract mid-surfaces from models with varying wall thickness or produce mid-surfaces
with poor accuracy, leading to geometric errors. Furthermore, the computational efficiency of these methods is often inadequate for
large-scale models. To overcome these challenges, we propose an automated face-pairing mechanism that eliminates the need for
manual intervention, enhancing the algorithm’s robustness and enabling it to handle cases that the commercial CAD modeling engine,
Parasolid, cannot process. Our approach accurately processes variable thin-walled models, with results closely aligning with the
ground truth, as demonstrated by the provided error distribution tables. Moreover, our algorithm achieves a 4− 12 times improvement
in efficiency than previous methods over the geometry extraction stage and supports multi-threaded acceleration, significantly reducing
computation time. Experimental results demonstrate that our algorithm surpasses existing methods in both accuracy and efficiency,
offering a promising solution for mid-surface extraction in complex, variable thin-walled models.

Keywords: Mid-surface Abstraction, Variable Thin-walled Models, Automatic Face Pairing

1. Introduction

Mid-surface abstraction has been a classic engineering chal-
lenge for many years, playing a pivotal role in the simulation
and analysis of thin-walled structures across various industries,
including aerospace, automotive, and mechanical engineering.
Within CAD systems, for a solid model, mid-surface abstraction
is defined as the process of obtaining an intermediate surface for
thin-walled structures (such as sheet metal and plastic parts), in
which the size of one dimension (thickness) is much smaller than
the other two (width and length). This surface ensures that the
shortest distances from any point on it to the two faces are equal,
thereby simulating the shape. This simplified representation is
widely used in CAE operations, such as engineering analysis (fi-
nite element analysis, FEA) [1, 2], feature recognition [3], and
model reduction [4, 5]. These applications help reduce the need
for expensive physical prototypes, thereby shortening product
development time and lowering costs. However, for engineer-
ing analysis, solid models often face difficulties in topological
identification due to numerous detailed features. Additionally,
when free-form surfaces are involved, the process of extracting
mid-surface becomes time-consuming, and the resulting geomet-
ric errors cannot be ignored. Therefore, there is a need to abstract
the mid-surface in a rapid way while the results remain reliable.

Current research on mid-surface abstraction employs di-
verse methodologies, primarily based on medial axis transform

∗Corresponding author. This work was funded in part by ”Pioneer” and
”Leading Goose” R&D Program of Zhejiang Province (No. 2025C01086).

Email addresses: li-ye@zju.edu.cn (Li Ye), 2xh@zju.edu.cn
(Xinhang Zhou), fanpeng0103@zju.edu.cn (Peng Fan), trf@zju.edu.cn
(Ruofeng Tong), lihailong@poissonsoft.com (Hailong Li),
dp@zju.edu.cn (Peng Du), tang_m@zju.edu.cn (Min Tang)

(MAT) [6, 7], chordal axis transform (CAT) [8, 9], and face pair-
ing (FP). Compared to MAT and CAT methods, face pairing-
based methods eliminate branching structures. This charac-
teristic better reflects the topology of a solid model and has
proven to be useful in a variety of applications. Due to this
advantage, numerous studies [10, 11, 12] and commercial soft-
ware (e.g., Parasolid [13]) have adopted this method. A typical
face pairing-based workflow comprises three stages: face pair-
ing, mid-surface extraction, and topological repair. Although
existing algorithms perform adequately for simple constant-
thickness models, they encounter critical limitations when han-
dling complex scenarios such as continuous transitional features
(fillets/chamfers) and complex variable-thickness models. These
challenges manifest as mid-surface defects, including missing
surfaces, gaps, overlaps, positional deviations, and shape inaccu-
racies. Rectifying such errors typically requires manual interven-
tion, which is often tedious and time-consuming. Consequently,
despite extensive research efforts, two primary issues persist:

1. Complex Topological Structures: For components with
intricate topological structures, the automated face pairing
mechanism often fails to yield accurate results. Existing al-
gorithms struggle to handle transitional scenarios and vari-
able thin-walled models, leading to inaccuracies that can
compromise the integrity of subsequent analyses.

2. Variable Thin-Wall Models: Most algorithms are inade-
quate in efficiently and accurately processing variable thin-
wall models. The variability in wall thickness introduces
additional challenges, affecting both the geometric accuracy
and computational efficiency of mid-surface extraction.

To address these challenges, this paper introduces a suite of
innovative algorithms:

Preprint submitted to Elsevier September 3, 2025

Figure 1: The algorithm overview of MidSurfer. The input thin-walled model’s faces are first classified into different types and further organized into distinct face group
pairs (FGPs). Subsequently, the mid-surface geometry extraction algorithm extracts the mid-surface for each face group based on the wall thickness. Finally, the model
undergoes trimming operations, including intersection and imprinting, to determine the boundaries of the mid-surface, thereby yielding the final mid-surface.

• Automated Face Pairing Mechanism: We propose a novel
automated face pairing mechanism that enhances the algo-
rithm’s robustness by expanding the face types and comple-
menting the results based on face adjacencies. This mecha-
nism can handle complex variable wall-thickness scenarios
that are beyond the capabilities of conventional methods.

• Efficient Variable Thin-Wall Processing: We have de-
signed an efficient algorithm for generating mid-surfaces for
variable thin-wall models. By using the precise mid-point
query strategy and the multi-threaded parallel mechanism,
the algorithm not only improves computational efficiency
but also maintains high geometric accuracy, addressing the
limitations of existing methods.

Fig. 1 illustrates an overview of our proposed method. The
initial thin-walled model first enters the face-pairing stage, where
different face types are classified and face adjacencies are used
to obtain pairing results. Then, in the geometry extraction stage,
the wall thicknesses of the paired faces are determined. For
constant-thickness models, offset surfaces are directly generated.
For variable-thickness models, a two-step mid-point extraction
method is applied to obtain precise mid-points, which are then
used to fit surfaces. Finally, through intersection and imprinting
operations, the surfaces are trimmed or stitched to produce the
final mid-surface.

To validate our approach, we employed a series of complex
engineering benchmarks. Our results demonstrate that we can
generate mid-surfaces with high geometric accuracy for various
variable wall thickness scenarios while significantly improving
efficiency through parallel computing, with a 2 − 4 fold increase
compared to single-threaded implementations, and a 4 − 12 fold
increase compared to previous methods. Furthermore, by test-
ing our manually created dataset of thin-walled models, com-
prising 213 models, our method outperforms existing techniques
in terms of usability and generalizability. By addressing these
long-standing challenges, our work contributes to more reliable
and efficient mid-surface abstraction processes, paving the way
for enhanced simulation and analysis of thin-walled structures.

2. Related Works

In this section, we briefly review recent advances in the most
relevant areas: mid-surface abstraction methods, face pairing

Figure 2: Differences between MAT, CAT, and FP in a 2D perspective.

techniques, and mid-surface geometry extraction.

2.1. Mid-surface Abstraction Method

Mid-surface abstraction techniques are primarily categorized
based on their construction processes into three main methods,
as shown in Fig. 2:
MAT, introduced by Blum [14], is an early dimensionality re-
duction method that generates mid-surfaces by computing the
set of centers of the maximum inscribed circles within a ge-
ometric body. Although it is widespread in various analyses
such as model simplification, shape analysis, and mesh gener-
ation [15, 6], its topological complexity leads to many small
branches that need to be manually pruned.

To address these issues, Lee et al. [16] proposed a 3D MAT
algorithm to trim small branches, but it struggled with degener-
ate models. Donaghy et al. [6] introduced a mixed-dimensional
modeling approach using aspect ratio thresholds. Ramanathan
et al. [7] combined medial axis and surface pairing methods to
automatically generate mid-surfaces. However, these methods
generally face challenges in topological correction and geomet-
ric accuracy due to their reliance on the model’s medial axis.
CAT was initially proposed by Prasad [17] for skeletal repre-
sentation in biological morphology. It defines a skeletal shape
formed by connecting mid-points of Delaunay triangulated edges
within a 2D shape. Quadros et al. [18] extended this concept
to 3D, converting thin-walled models into single-layer tetrahe-
dral meshes to generate gridded mid-surfaces. However, the ini-
tial tetrahedral mesh generation was overly simplistic, and mesh

2

classification was incomplete, failing to handle certain tetrahe-
dral elements.

Kwon et al. [19] improved mesh quality using the advancing
front method, and Quadros [8] introduced Delaunay meshing to
avoid internal node insertion. Nolan et al. [9] proposed a hy-
brid mesh method that decomposes structures into beams, shells,
and complex regions. Despite these advancements, generating
accurate tetrahedral meshes for complex models remains chal-
lenging, and the geometric quality of the resulting mid-surface is
often suboptimal.
Face pairing is currently the mainstream method for mid-surface
abstraction. The core idea is to identify face pairs within a model,
process the mid-surface geometry, and repair the model’s topol-
ogy. Rezayat [10] pioneered this approach by creating a Face
Adjacency Graph (FAG) framework to match face pairs based
on distance and normal. While foundational, this method was
limited to simple models.

Lee et al. [20] enhanced the algorithm by introducing bound-
ary extension rules, improving topological integrity by using the
model’s topological boundaries to extend mid-surfaces. Sheen
et al. [11] proposed a comprehensive method by suppressing
the features of the model and pairing the faces in the simplified
model. However, these methods struggle with discontinuous sur-
face connections and branching, leading to errors in regions with
significant topological changes.
Other methods, such as the feature-based shrink-wrapping tech-
nique proposed by Sheen et al. [21], simulate a “deflation” pro-
cess but rely on user-defined feature information. Commercial
systems, such as Parasolid [13], integrate mid-surface generation
tools but lack robustness for complex models and require manual
face-pair specification.

Given the limitations of existing methods, developing an ef-
fective mid-surface abstraction process that ensures topological
stability while supporting variable wall thicknesses and complex
free-form surfaces is crucial. This paper builds upon the Face
Pair method, generalizing the process into face pairing, geome-
try extraction, and trimming. Our newly designed algorithms not
only ensure topological correctness but also effectively support
variable wall thickness models.

2.2. Face Pairing Technique
While face-pair-based methods have shown promise in han-

dling thin-walled models, their core challenge lies in robustly
identifying face pairs in complex topologies. Traditional heuris-
tic rules [10, 11, 20] struggled with both computational efficiency
and accuracy in high-complexity models, prompting recent ef-
forts to use model segmentation to reduce the search space.

Early segmentation methods focused on geometry-driven de-
composition. Chong et al. [22] introduced a concave edge loop-
based method, extracting boundary features and generating mid-
surfaces within sub-modules. While pioneering mixed-thickness
compatibility, it suffered from poor free-form adaptability due
to its single concave edge criterion. Woo [12] advanced this
with a divide-and-conquer strategy, decomposing models into ba-
sic units, constructing redundant connections, and hierarchically
stitching to form a global mid-surface. Despite success with sim-
ple geometries, its reliance on extensive Boolean operations re-
duced stability for free-form surfaces and rib-like structures. Zhu
et al. [23] improved this by decomposing models based on rib
features, leveraging hierarchical semantics, and using offset op-
erations to represent face pairs in sub-regions. However, it still
struggled with face pairing in variable-thickness models.

To mitigate topological discontinuities caused by segmenta-
tion, hybrid-dimensional modeling and connectivity constraints

Figure 3: The cases where previous methods failed to address during the face
pairing (a) and geometry extraction (b) stages.

have emerged. Robinson et al. [24] proposed a hybrid mid-
surface paradigm, preserving 3D structures in connection regions
and maintaining continuity via mixed 2D-3D representations.
Kulkarni et al. [25, 26] decomposed thin-walled models into mid-
surface generation nodes and interaction parsing nodes based on
connection types, constructing mid-surfaces via offsetting and
sweeping. This enhanced topological effectiveness but required
feature-rich CAD inputs and was restricted to sheet metal parts,
lacking adaptability for models with fillets or chamfers.

Given these challenges, current research faces two core chal-
lenges (Fig. 3-a): (1) Existing face pairing methods (heuristic
rules, virtual segmentation) lack geometric compatibility with
variable-thickness free-form surfaces, causing pairing failures
and hindering mid-surface geometry generation. (2) Current
pairing criteria (feature suppression, 1-1 pairing) fail to support
transitional scenarios (fillets, chamfers, 1-n/n-n pairing), com-
promising topological correctness in complex connections. No-
tably, thin-walled models in aerospace and automotive industries
often share these features, demanding robust face pairing meth-
ods. This paper optimizes topological judgment for variable-
thickness models by extending face pair types and versatile rules,
thus enhancing mid-surface abstraction applicability.

2.3. Mid-surface Geometry Extraction
The creation of mid-surface geometry typically involves gen-

erating the mid-surface and trimming these surfaces. Most ex-
isting work [10, 11, 12] focuses on constant-thickness models,
where mid-surfaces are efficiently derived from offset surfaces,
producing high-quality results. Recent efforts, however, target
variable-thickness models, where the core idea is to obtain mid-
points on the mid-surface and interpolate them to form the final
surface.

Several classic methods exist for obtaining mid-points.
Shewchuk et al. [27, 28] used Delaunay triangulation to generate
meshes for face pairs, treating vertices as feature points to find
corresponding points on opposite faces and compute mid-points.
Zhu et al. [23, 29] extended this by using projection and intersec-
tion: projecting points from the upper surface to the lower sur-
face and constructing lines from original points and their normals
to intersect with the lower surface, then the mid-point was inter-
polated by both points. However, the method is limited to nearly

3

Figure 4: The algorithm pipeline of MidSurfer consists of two stages to obtain
the correct face pairing results, the precise mid-surface fitting points, and trim or
stitch the surface boundaries to abstract the correct mid-surface.

parallel face pairs, with significant errors occurring when surface
angles exceed 15, highlighting the need for high-precision and
efficient computation for variable-thickness models.

During the trimming or stitching stage, Lee et al. [20] cre-
ated a Face Adjacency Graph (FAG) to represent relationships
between connected faces, identifying face pairs with distances.
These pairs were then used to extend and stitch mid-surfaces.
Woo et al.[12] created mid-surfaces by trimming, extending, and
stitching them together. The extension of mid-surfaces is com-
plex and often relies on various methods (e.g., FAGs and MATs).
However, these methods are sensitive to input and can result in
incomplete or invalid mid-surfaces for complex solid models due
to topological changes that occur when converting faces to mid-
surfaces.

Given these challenges, current research faces two core is-
sues (Fig. 3-b): (1) Existing mid-surface methods primarily tar-
get constant-thickness cases, while industrial models often fea-
ture variable thickness, with current support limited to specific
surface types, yielding inaccurate results. (2) Variable-thickness
methods heavily depend on geometric operations, leading to in-
efficiency, especially for complex models. This paper proposes a
novel variable-thickness mid-surface extraction method, employ-
ing a heuristic algorithm on discretized face pairs to compute
mid-points without geometric operations, enhancing efficiency
and accuracy.

3. Algorithm Pipeline

The proposed mid-surface abstraction method follows a two-
stage pipeline: (1) face pairing and (2) geometry generation
(Fig. 4).

In the face-pairing stage, the input model is processed to ex-
tract constant and variable wall thickness face pairs using an im-
proved face-pairing algorithm. This involves classifying faces
into planar and transitional sets, grouping them based on dis-
tance and overlap rules, and refining the results by correcting
misgroupings using face adjacency relationships.

Once the face groups are established, the geometry genera-
tion stage employs a two-step mid-point extraction algorithm.
First, medial lines are generated by computing shortest distances
between sampled face points using a Bounding Volume Hier-
archy (BVH) and connecting them to form candidate medial

Figure 5: The illustration of distance, normal, and overlap criteria in face pairing.

lines. Next, precise mid-points are identified through a dual-
index table-based iterative search, ensuring accurate placement.

Finally, the extracted mid-points are interpolated to construct
NURBS surfaces, which are then trimmed based on face group
connectivity and model boundaries. This refinement process en-
sures that the final mid-surface accurately represents the input
model while maintaining structural consistency.

3.1. Improved Face Pairing Method
To address complex variable-thickness models, the first step

is to accurately identify face group pairs (FGPs). Traditional
face pairing methods (heuristic rules, virtual segmentation) [20,
11, 12, 26] lack geometric compatibility with variable-thickness
free-form surfaces. These approaches typically require model
feature suppression prior to pairing, while lacking robust support
for transitional geometries (fillets and chamfers, etc.), thereby
compromising topological integrity in complex junction regions.
Consequently, we propose an improved face pairing algorithm
specifically optimized for variable-thickness models.

Basic Concept. Three key criteria are widely used in the current
face pairing method, as illustrated in Fig. 5:

1. Distance Criterion: the distance d between the two candi-
date faces should not exceed a threshold twall:

Dist(fleft, fright) ≤ twall, (1)

where twall defaults to the maximum thickness of the thin-
walled model and can be manually specified.

2. Normal Criterion: The outward normals N1 and N2 of the
paired faces must be approximately antiparallel, satisfying:∣∣∣180◦ − ∠(Nleft,Nright)

∣∣∣ ≤ θ, (2)

where θ denotes the angular tolerance threshold, typically
set θ ≤ 15◦ in industrial applications.

3. Overlap Criterion: When projecting either face (the pro-
jection face) along its normal direction onto the other face
(the target face), the projected area ratio should satisfy:

Project(fleft, fright) ≥ R ∧ Project(fright, fleft) ≥ R, (3)

where R defaults to 50% and can be manually specified.

Face Classification. We first classify each face in the thin-walled
model into two distinct categories: face pairs and lateral faces.

1. Face pair: refers to a pair of faces in a thin-walled model
that satisfies the aforementioned three criteria.

2. Lateral face: an elongated intermediate surface connecting
the two constituent faces of a face pair in thin-walled struc-
tures.

4

Figure 6: The face pairing algorithm consists of two steps. The left side illustrates the first step, where face pairs are filtered using three criteria. The table records
whether each pair satisfies these criteria. The right side demonstrates the second step with a challenging face pair example, showing how its matched faces are identified
by incorporating additional local adjacency information and relaxing thresholds for criteria 2 and 3.

Algorithm 1: Face Pairing Algorithm
Input : Face set F
Output: Face Group Pair FGP, candidate faces Fcandidate

1. Initialize:
Fremain ← F, Fcandidate ← ∅

2. while Fremain , ∅ do
3. fleft ← SelectSeed(Fremain)
4. GroupRight ← ∅
5. foreach fright ∈ Fremain do

6. if Equation(1, 2, 3) then
7. GroupRight ← GroupRight ∪ fright
8 .Fremain ← Fremain \ fright

end
end
9. if GroupRight = ∅ then

10. Fcandidate ← Fcandidate ∪ fleft
continue

end
11. FGP← GroupRight ∪ { fleft,GroupRight}

end
return FGP, Fcandidate

Considering the real topology of the model, face pairs are cate-
gorized into 1-1 face pairs and 1-n/n-n face pairs.

1. 1-1 Face Pair: A face pair comprising exclusively paired
left and right faces, where these two faces alone suffi-
ciently encapsulate all geometric information required for
mid-surface generation.

2. 1-n/n-n Face Pair: A face pairing formed by one or multiple
left faces corresponding to multiple right faces. This type
of pairing requires combinations of multiple left and right
faces to fully describe the model features of thin-walled
models at that location, which primarily represent transi-
tional scenarios in the model structure, such as fillets, cham-
fers, etc, as shown in Fig. 1-Face Pairing.

Face Pairing. During the face pairing stage, three key criteria
(Distance, Normal and Overlap) are precomputed for all dis-
tinct face combinations (f acei and f ace j, i , j) and recorded
in a corresponding table. The Overlap is calculated by project-
ing sampled points from one face to another face and statistically

determining the hit rate. The computation of Normal involves
taking sample point within f acei’s overlap region and project-
ing point along f acei’s local normal onto f ace j to obtain cor-
responding points, calculating the angle θi j between the normal
at these points, symmetrically performing the identical projec-
tion and angle calculation θ ji from sample points within f ace j ’s
overlap region onto f acei, and finally taking the arithmetic mean
of all θi j and θ ji values from these sampled points as the nor-
mal between the two faces, with the angle defined 0◦ if no over-
lap exists. After acquiring the criteria between different combi-
nations, the combinations satisfying both Overlap ≥ 80% and
|180◦ − ∠(Normal)| ≤ 10◦ are filtered (such combinations ex-
hibit higher probabilities of forming a face pair in thin-walled
regions). The distance of these filtered combinations is then par-
titioned into intervals to construct a wall thickness statistics (as
illustrated in Fig. 5-a). Finally, the maximum distance within the
peak frequency interval is defined as the Distance threshold of
the model.

The core framework of the face pairing algorithm is presented
in Algorithm 1 and illustrated by Fig. 6, Select a seed face fleft
and choose another face fright from the remaining faces (line 3).
Upon the precomputed table, fleft and fright satisfy criterion(1, 2,
3) (line 6), add fright to fleft’s matched pair group GroupRight,
then continue iterating through the remaining faces (lines 7-8).
If no qualifying face fright is found, fleft is removed from the cur-
rent face set (lines 9-10). A new seed face is then selected from
the remaining faces, and the pairing operation is repeated. This
iterative process continues until all faces in the model have been
traversed, identifying partial 1-1 face pairs and 1-n face pairs
(line 11). Any faces that remain unmatched are designated as
candidate face sets Fcandidate for subsequent processing.

Pairing Result Complementation. In the preliminary face pair-
ing stage, the aforementioned three criteria have successfully
matched a subset of face pairs. However, the candidate face
set Fcandidate still contains some faces (e.g., faces with signifi-
cant normal variations or fragmented faces) that have potential
matches but are difficult to pair using criteria 2 and 3. To ad-
dress this, a complementary face pairing algorithm is proposed.
This algorithm leverages local adjacency information from pre-
matched face pairs to provide additional topological context,
while relaxing the threshold in criteria 2 and 3. thereby re-
pairing the unmatched faces to obtain all face pairs.

5

Figure 7: The two-step mid-point extraction method, including medial line generation and mid-point extraction, where the blue box represents the medial line to be
extracted, the green box represents the recursive stopping condition, and the red box represents the non-stop cases, in which case the yellow box is the medial line of
the new iteration.

Algorithm 2: Complementary Face Pairing Algorithm
Input : Candidate Face Set Fcandidate, twall
Output: Face Group Pair FGP

1. Initialize:
Fremain ← Fcandidate

2. while Fremain , ∅ do
3. fleft ← SelectSeed(Fremain)
4. Fadj ← GetAdjacentFaces(fleft)
5. GroupRight ← ∅
6. foreach fadj ∈ Fadj do

7. if ∃ f matched
adj ← GetPreMatchedPairs(fadj) then

8. Fmatched
adj ← GetAdjacentFaces(f matched

adj)
9. foreach fright ∈ Fmatched

adj do

10. if
S o f tOverlap(fleft, fright)
and S o f tNormal(fleft, fright)
and ¬AreAd jacent(fleft, fright)

then

11.GroupRight ← GroupRight ∪ fright
end

end
end

end
12. FGP← GroupRight ∪ { fleft,GroupRight}
13. Fremain ← Fremain \ fleft

end
return FGP

Algorithm 2 and Fig. 6 illustrate the main architecture of the
proposed method, Within the candidate face set Fcandidate, select
a seed face fleft and retrieve its adjacent face set Fad j. For each
face fad j ∈ Fad j : if fad j has a pre-matched face f matched

ad j , obtain
f matched
ad j ’s adjacent set Fmatched

ad j (lines 3-8, Fig. 6-Result Comple-
mentation). For each fright ∈ Fmatched

ad j . If fleft and fright satisfy
criterion 2 under a soft angle threshold (default: 0◦-30◦), crite-
rion 3 under a soft overlap threshold (default: 30%), and are non-
adjacent (no direct topological connection), add fright to fleft’s
matched pair group GroupRight (line 10). Repeat this process
by reselecting seed faces from the remaining candidates until all
Fcandidate are exhausted. The final results include all 1-1 face
pairs, 1-n face pairs, and the lateral face set excluded from mid-
surface generation.

After obtaining all face pairs, abstract each face as a graph
node. Connect corresponding left-right face pairs to form an
undirected graph. A maximal connected subgraph in the undi-
rected graph constitutes an FGP. For each maximal connected
subgraph, perform graph coloring: initiate traversal from an ar-
bitrary node, color this node red, and assign blue to all adjacent
nodes and vice versa during propagation. Upon completing sub-
graph traversal, the faces corresponding to the red nodes are de-
fined as left faces, and the faces corresponding to the blue nodes
are defined as right faces. This process eliminates redundant face
pair couplings, providing concise and precise FGPs for subse-
quent mid-surface generation.

3.2. Abstraction of Mid-surface Geometry

In geometric processing, given a face group pair, FGPi =
{FGleft, FGright}, which consists of two face groups FGleft and
FGright, where FG = (F1, F2, . . .). For a mid-surface MS i, it is
represented as:

∀P ∈ MS i, Dist(P, FGleft) = Dist(P, FGright), (4)

where the distance function Dist(P, FG) is defined as the min-
imum Euclidean distance from point P to all faces in the face
group FG.

After face pairing, we first determine the wall thickness of
each FGP. We determine the type of wall thickness by Parasolid’s
range function, and if the difference between its maximum and
minimum distances is less than a pre-specified tolerance (default:
1E-3), then it is judged to be constant wall thickness. For con-
stant thickness, precise geometry can be directly achieved by cre-
ating an offset surface. For variable thickness, the resulting mid-
surface can be generated by fitting precise mid-points to create
a Non-Uniform Rational B-Spline (NURBS) surface. However,
obtaining accurate mid-points is challenging. Previous methods
used projection or intersection to obtain mid-points, but these
approaches often resulted in low-precision mid-points, leading
to cumulative errors in the fitted surface.

To address this issue, we propose a two-step method to com-
pute the mid-points, as shown in Fig. 7. The process consists of
medial line generation followed by mid-point extraction. Unlike
prior methods, our algorithm directly calculates mid-points with
a high degree of accuracy. Finally, the generated mid-surfaces
are spliced or removed through trimming operations, guided by
the model’s topology, to consolidate the final mid-surface.

6

Algorithm 3: Medial Line Generation
Input : Face group pair FGPi = {FGleft, FGright}

Output: Medial line ML

1. Initialize:
Discretize FGleft, FGright into triangular meshes

Mleft,Mright
2. BVHleft ← BuildBVH(Mleft)
3. BVHright ← BuildBVH(Mright)
4. S Pleft ← DenseSample(Mleft, n) // n: sample density
5. foreach sample point Pi ∈ S Pleft in parallel do

6. Qi ← BVH ClosestPoint(BVHright, Pi)
end
7. Connect {(Pi,Qi)} pairs to form medial line ML
return ML

Medial Line Generation. The algorithm’s overarching structure
is delineated in Algorithm 3 and illustrated by Fig. 7-a. To gener-
ate the medial line, we first discretize the face groups (i.e., FGleft
and FGright, line 1) into triangle meshes Mleft and Mright, respec-
tively, then uniformly sample each triangle mesh Mleft to obtain
sample points (line 4), each triangle mesh retains its vertices and
n interior points (default: n = 1), denoted as S Pleft. Simulta-
neously, we construct Bounding Volume Hierarchies (BVH) for
both the Mleft and Mright, resulting in BVHleft and BVHright (lines
2-3). After that, we perform closest-point queries for each sam-
ple point against BVHright in parallel (lines 5-6). By connecting
each sample point to its closest point on the Mright, we construct
a medial line that passes through both face groups (line 7). This
medial line exists at least one mid-point, which can then be fur-
ther extracted.

Based on Theorem 1 in the supplementary material, we have
the conclusion that if a line intersects both the left and right faces
of a face pair, there must exist a point on the line equidistant to
the left and right faces, which is the mid-point to be extracted.

Mid-point Extraction. The procedure for mid-point extraction
Strategy is outlined in Algorithm 4. For each medial line, per-
form a recursive search (lines 2-16) by initially sampling n (de-
fault: 16) points (Fig. 7-b, line 3). Using BVHleft and BVHright,
calculate the shortest distance from each point to the left and right
face groups (i.e., Mleft and Mright, lines 5-6). During this process,
for each point(Pi), we store the distance difference as signTable
(line 7):

S igni = sgn(Dist(Pi,Mleft) − Dist(Pi,Mright)), (5)

and the corresponding triangle indices TriIdPi
left and TriIdPi

right in a
triangle index table (triIDTable, line 8). Iterate through adjacent
sample points Pi and P j (lines 9–13). If adjacent points fulfill:

TriIdPi
left = TriIdP j

left∧TriIdP j

right = TriIdP j

right∧S igni , S ign j, (6)

indicate that there is a mid-point in Pi and P j with equal shortest
distance triangular indices from Mleft and Mright (Fig. 7-b1, line
10). We then perform a binary search between Pi and P j until the
distance difference between the left and right face groups is less
than the tolerance (Fig. 7-b2, lines 11-12). Return the resulting
mid-point (line 13).

If no adjacent points meet these criteria, further subdivide the
medial line (lines 14–16). Identify the first Pi and last P j points
in the signTable where the sign changes (line 15), and recur-
sively apply the sampling search method to the segment between
these points (line 16, Fig. 7-b3).

Algorithm 4: Mid-point Extraction
Input : Medial line ML, BVHleft, BVHright
Output: Mid-point MP

1. Initialize:
MP, dmax //Maximum recursion depth

2. Function RecursiveSearch([Pstart, Pend], depth d):
3. Sample n points {P1, ..., Pn} along [Pstart, Pend]
4. foreach Pk ∈ {P1, ..., Pn} in parallel do

5. dleft ← BVH MinDist(BVHleft, Pk)
6. dright ← BVH MinDist(BVHright, Pk)
7. Store signTable[k]← sgn(dleft − dright)
8. Store triIDTable[k]← (TriIDleft,TriIDright)

end
9. for k = 1 to n − 1 do

10. if Equation(6) then
11. Pmid ← BinarySearch(Pk, Pk+1, ϵ)
12. if ∥dleft(Pmid) − dright(Pmid)∥ < ϵ then

13. MP← Pmid
end

end
end
14. if No MP found ∧ d < dmax then

15. Find first i and last j where signTable changes
16. RecursiveSearch([Pi, P j], d + 1)

end
17. Launch:

RecursiveSearch(ML, initial depth d = 0)
return MP

Based on Theorem 2 in the supplementary material, we have
the conclusion that if the indices of the closest triangular meshes
to the left and right faces are identical for two sampled points,
then all points along the connecting segment will have their clos-
est distances to the same triangular meshes. Combining this with
Theorem 1, a mid-point must exist between two sample points
with sign changes, allowing for efficient localization of this mid-
point via binary search.

The most computation-intensive part of the above stage is the
calculation of sampled points in each iteration. Since there is no
data dependency between these processes, we accelerated them
in parallel with multiple CPU threads using OpenMP [30]. Due
to potential variations in the shortest distance calculations for dif-
ferent sampled points, dynamic task scheduling was employed,
allowing threads to dynamically claim task blocks and further
balance the workload. Additionally, since multiple threads si-
multaneously write to adjacent memory locations (contiguous el-
ements in signTable and triIDTable), we manually allocated in-
dependent local storage for each thread, which was merged into
the global array, thereby eliminating the effects of false sharing.
Surface Fitting and Trimming. After computing all mid-points,
those belonging to a face pair are fitted to a single mid-surface.
NURBS surface fitting is a classical problem [31]. In our method,
we use default fitting parameters for all FGPs, specifically bicu-
bic with continuous second derivatives. The surface’s u and v
directions both have a degree of 3, and maintain C2 continuity to
ensure smoothness. Additionally, the surface is kept open in both
parametric directions to facilitate trimming. For robustness, we
extend the NURBS surface to preserve correct topology between
adjacent mid-surfaces.

The trimming operation primarily involves selecting or dis-
carding surface patches through imprinting and intersecting pro-

7

cesses. The first step is to obtain the trim curves, which are
derived from three operations: projecting the edges of the left
and right faces of an FGP, determining the intersections between
the mid-surfaces, and finding the intersections between the mid-
surface and the lateral faces. These curves are then imprinted
onto the original mid-surface, dividing it into a new set of mid-
surface patches. Next, perform projection and intersection opera-
tions between face pairs to determine which mid-surface patches
overlap with the face pairs. Retain these overlapping mid-surface
patches and discard the unnecessary ones. Finally, rebuild the
topological relationships to generate the final mid-surface.

4. Implementation and Results

The proposed algorithm was implemented as a prototype sys-
tem in C/C++, utilizing Parasolid V35 [13] and Visual Studio
2022 on a Windows 11 (64-bit) platform. The system was ex-
ecuted on a 3.4GHz Intel Core i7-14700KF CPU with 28 cores
and 32GB of RAM.

The system takes solid models as input and requires no user
interaction. Algorithm efficacy was validated through topologi-
cal and geometric accuracy of the extracted mid-surfaces, as well
as its computational efficiency.

Extensive testing used diverse solid models from Onshape’s
public dataset1, with six iconic models chosen as benchmarks
to demonstrate specific algorithmic capabilities. These models
highlight challenges in automated mid-surface abstraction, par-
ticularly where existing methods fail due to topological or geo-
metric constraints, except for Model 1.

• Model 1: A plastic thin-shell model with constant wall
thickness, consisting of 37 faces and no multi-face pairing
scenarios, used to validate the algorithm’s basic capabilities.

• Model 2: A ceramic bowl with 17 faces, including 8
variable-thickness face pairs. This model represents a sim-
ple case with only 1-1 or 1-n face pairs.

• Model 3: A turbo impeller, comprising 91 faces, most of
which involve 1-n or n-n pair faces. The freeform sur-
faces exhibit more complex variations, challenging the al-
gorithm’s handling of intricate geometry.

• Model 4: The original version of Model 1 without fea-
ture suppression, containing both constant and variable wall
thickness scenarios with 78 faces. It better represents the
true mid-surface of Model 1.

• Model 5: A tire model from the automotive industry, fea-
turing 167 faces, including 28 variable-wall thickness face
pairs and 27 n-n face pairs. Its complex topology and
diverse variable wall thickness scenarios pose significant
challenges.

• Model 6: An aircraft model from a real-world aerospace
scenario, with 286 faces and highly complex topological
and geometric structures, used to verify the algorithm’s ro-
bustness under the most challenging conditions.

1https://cad.onshape.com/documents?nodeId=3&resourceType=

filter

4.1. Correctness and Accuracy
Correctness of the mid-surface topology. We demonstrate the
superiority of our method through benchmarks, with results
shown in Fig. 8. Model 1, a simple constant wall thickness
model, can be extracted by previous methods, and MidSurfer
also correctly extracts the mid-surface, demonstrating the algo-
rithm’s support for classic cases. Fig. 8-b illustrates a 1-n vari-
able wall thickness scenario, revealing numerous fillets for tran-
sitions. Traditional methods often suppress these transition fea-
tures, even though they significantly impact simulation results,
and fail to handle them correctly. MidSurfer preserves these tran-
sition features to ensure topological accuracy. Fig. 8-c presents
a similar situation, but the model features more n-n face pairs.
The connection between the fan blade and the base, shown in
the figure, includes many fillet transitions, which may lead to
incorrect topological boundaries in the generated mid-surface.
By using the soft normal and overlap criteria, MidSurfer’s n-n
pairing effectively extracts a more complete topology, providing
smoother transitions, reducing local topological discontinuities,
and reflecting a more accurate model topology.

Fig. 8-d to Fig. 8-f showcase more complex topological sce-
narios, with models containing mixed regions and intricate con-
nections. Model 4 is the pre-feature-suppression version of
Model 1, and by comparing the mid-surfaces generated by both,
Fig. 8-d better reflects the true topology of the model. Models
5 and 6 are real-world industrial models, where details reveal
numerous slanted or tapered surfaces and corresponding small
patches. Such mixed features are prone to generating incorrect
mid-surfaces. In these cases, initial face pairing often deviates
significantly from the true results. However, through iterative
searches of adjacent faces, the final face pairs are completed,
yielding accurate mid-surfaces, as shown in Fig. 8-f.

Geometrical accuracy analysis. We conducted geometric accu-
racy tests on the benchmarks, noting that each model includes
both constant and variable wall thickness scenarios, with all sta-
tistical data focusing on the variable wall thickness cases. Fig. 8
displays the final mid-surface results for all benchmarks, demon-
strating that MidSurfer consistently produces satisfactory out-
comes across various scenarios. To measure the geometric ac-
curacy of the mid-surfaces, this study employs relative error (R-
error) [29], defined as follows:

R(e) =
|dleft − dright|

t
. (7)

Here, dleft and dright represent the distances from the sample point
to the left and right FGPs, respectively, and t denotes the average
thickness of an FGP. Given the potentially large number of sam-
ple points, statistical results of geometric errors are used. Sam-
ple points are obtained by uniformly sampling the mid-surface,
and several error intervals are defined. The statistical results of
geometric errors for mid-surfaces generated by different bench-
marks are listed in Table 1. Most sample points fall within the
[0, 0.5‰] interval, indicating the algorithm’s high geometric ac-
curacy. However, Models 3 and 6 exhibit the poorest accuracy,
with nearly half of the sampled points falling within the [1, 1%]
interval. This is attributed to the significant curvature changes
in the left and right faces of each face pair in Model 3 (Fig. 8-
c), leading to partial geometric errors in the fitted mid-surface.
Due to boundary effects, these errors are mostly concentrated in
the interior rather than the edges. Model 6’s errors stem from its
complexity, featuring 37 variable wall thickness face pairs, and
as shown in Fig. 8-f, the wing has a large dorsal area, which also
affects the geometric accuracy.

8

https://cad.onshape.com/documents?nodeId=3&resourceType=filter
https://cad.onshape.com/documents?nodeId=3&resourceType=filter

Figure 8: The mid-surface results for each benchmark. The original model on the left and its corresponding mid-surface on the right. Yellow boxes denote topological
analysis, while red boxes indicate geometric analysis. Different face pairs are highlighted using varied colors for clarity.

In contrast, MidSurfer has better support for these types of
models due to the relative simplicity of the model (Fig. 8-b), the
clarity of the topology (Fig. 8-d), and the small rate of curvature
change in the face of variable wall thickness (Fig. 8-e). Notably,
Model 4 achieves exceptionally high precision (94% of points
in the [0, 0.5] interval). Since Model 4 represents Model 1 be-
fore feature suppression, this demonstrates that our method can
achieve high-quality mid-surfaces even without feature suppres-
sion. It is acknowledged that, due to the use of fitted surfaces,
some points inevitably fall into larger error intervals ([1, 20%]),
such as Models 3, 5, and 6. These are inherent fitting errors that
are difficult to eliminate but remain small effects, ensuring the
overall quality of the final mid-surface results.

4.2. Performance
We further conducted efficiency tests on various stages of the

algorithm, with the main results presented in Table 2, including

face pairing, the two primary steps of the mid-surface geometric
extraction, and the total elapsed time.

Face Pairing. In the face pairing stage, all benchmarks demon-
strated strong performance. For models with simple topological
structures, such as Models 1, 2, and 4, preliminary pairing suf-
ficed to achieve relatively accurate face pairs. Comparing the
pairing times of Models 1 and 4 reveals that the pre-feature-
suppression model, due to its variable wall thickness scenar-
ios, was 3.6X slower than the post-suppression model, indicat-
ing that repairing variable wall thickness face pairs consumes
significant time. Similarly, for the remaining models, the pres-
ence of numerous transitional structures or increased complexity
necessitated subsequent result complementation to achieve ac-
ceptable pairing results. Although Model 3 has fewer faces, each
blade involves n-n face pairs (Fig. 8-c), requiring more time for
classification and complementation. For Models 5 and 6, their

9

Table 1: The statistical results for R-errors of different benchmarks (%).

R-error [0, 0.5] [0.5, 1] [1, 1%] [1%, 10%] [10%, 20%] [20%, 1]

Model 2 78.57 14.29 7.14 0 0 0
Model 3 42.15 42.15 6.89 5.76 3.05 0
Model 4 94.21 5.53 0.26 0 0 0
Model 5 67.63 20.20 6.41 5.45 0.32 0
Model 6 44.65 40.07 6.11 5.46 3.71 0

Note: The data in the table represents the percentage of sample points within a specific error interval relative to the total number of sample points; Model 1, being a
constant wall thickness model, is not listed in the table.

Table 2: The statistical results of efficiency for different benchmarks (s).

M1 M2 M3 M4 M5 M6

Face Pairing 0.76 0.34 3.13 2.72 9.13 18.41

Medial Line Gen. - <0.01 0.03 0.01 0.09 0.17
Mid-Point Ext. - 0.03 0.25 0.09 0.34 0.59

Total (s) 1.31 0.61 5.36 4.35 15.73 28.76

inherent complexity further exacerbated the time consumption.
Since the face pairing method involves iterative pairing for each
face, model complexity significantly impacts the algorithm’s ef-
ficiency. For instance, Models 5 and 6 have 2.1X and 3.7X the
number of faces compared to Model 4, respectively, but their face
pairing times increased by 3.3X and 6.8X, accounting for a sub-
stantial portion of the total extraction time. It is acknowledged
that the face pairing method, which heavily relies on Parasolid
API calls and exhibits data dependencies, is challenging to par-
allelize. Nevertheless, given the precise face pairing results our
method achieves for variable wall thickness models, the time cost
is deemed acceptable.

Mid-surface Geometry Extraction. We calculated the time for
two steps: Medial Line Generation and Mid-point Extraction.
Note that all times represent the total time for all variable wall
thickness face pairs in the model. It can be observed that the
time for these two steps constitutes a minimal portion of the total
time, highlighting the advantages of our algorithm.

Since the core idea of the algorithm is to collect precise mid-
points in space, it exhibits excellent parallelism. We employed
parallel acceleration in both steps, achieving speedups of 3 − 4X
and 2 − 4X in the medial line extraction and mid-point extrac-
tion, respectively, compared to single-threaded implementations.
All models demonstrated good efficiency (except for Model 1,
which has constant wall thickness and thus no reported time).
Moreover, the geometric extraction time is proportional to the
model’s complexity. Models 3, 5, and 6, with 13, 28, and 37 vari-
able thickness face pairs, respectively, required extraction times
of 0.25s, 0.34s, and 0.59s, further proving the algorithm’s strong
parallel performance. Furthermore, we evaluated the computa-
tional efficiency based on the number of sampling points and the
use of threads, as detailed in the supplementary material.

By examining the total time, it is evident that some unlisted
time is consumed, primarily for fitting and offsetting surfaces.
Since these operations are performed directly using Parasolid
APIs, they are not included in the table. Given that mid-surfaces
are primarily used for subsequent analysis tasks, which are of-
ten one-time and do not require real-time interaction, the current
total time is regarded as reasonable.

5. Comparison and Analysis

To analyze the usability and generalizability of the mid-
surfaces generated by MidSurfer compared to previous methods,
we conducted a series of comparative studies. Since there is cur-
rently no dedicated dataset for mid-surface abstraction tasks, we
manually created a dataset focused on thin-walled parts. The
dataset comprises 213 representative models comprising 7894
faces. Some models from the dataset and their extracted mid-
surfaces are shown in the supplementary material.

Based on this dataset, we conducted three comparative experi-
ments to evaluate the geometric accuracy, performance, and gen-
eralizability of MidSurfer compared to other methods.

Experimental Setup. We implemented the corresponding com-
parison methods. For face pairing, we replicated the virtual de-
composition proposed by Woo et al. [12], where the algorithm
for obtaining concave edges was implemented by Parasolid API.
For the geometric extraction, we replicated the methods of CAT
and Zhu et al. [29], with the method by Quadros et al [18] being
used as a comparison version of CAT. Notably, when comparing
CAT, Zhu et al., and MidSurfer, we used the same discretization
results as the input for all methods to ensure consistent parame-
ter settings. The Parasolid [13] results were directly obtained by
API calls, with the method set to “Medial” and the tolerance set
to 1E − 5. Throughout the experiments, MidSurfer maintained
consistent experimental settings, including the use of an adaptive
distance criterion in the face pairing stage, along with default
normal (default: 15, soft: 30) and overlap (default: 50%, soft:
30%) criteria. In the geometric extraction stage, the sampling
density for medial line generation was set to 1X densification,
with 16 sampling points for mid-point extraction (as indicated in
Supplementary Materials, Section 2), and the maximum recur-
sion depth was set to 5.

Measures. For the geometric accuracy, we used the R-error
(Equation 7) as the metric and compared MidSurfer with tradi-
tional CAT, Zhu et al. [29], and Parasolid [13] methods. Note that
we only included variable wall thickness mid-surfaces that these
methods could generate from the dataset. The main results are
presented in Table 3. Similarly, to validate the generalizability
of MidSurfer, we analyzed the completion rates of various meth-
ods in the face pairing and geometric extraction stages across
the dataset, as detailed in Table 5. For face pairing, we manu-
ally intervened to determine whether the generated mid-surfaces
had topological omissions or additions compared to the original
model. For geometric extraction, we categorized the results into
the number of extractable face pairs and the number of models
that could be fully abstracted. A face group pair (FGP) was con-
sidered extractable if more than 50% of its sampled points fell
within the [0, 10‰] R-error interval. A model was deemed cor-
rectly abstracted if all its FGPs met this criterion.

10

Table 3: The statistical results for R-errors of different methods (%), with the default version of each method set to 1X densification.

R-error [0, 0.5‰] [0.5‰,1‰] [1‰, 1%] [1%, 10%] [10%,20%] [20%,1]

CAT 0.49 0.57 10.66 46.56 40.59 1.14
CAT (Densified, 3X) 0.66 0.57 12.63 43.84 41.23 1.05
CAT (More densified, 10X) 0.88 0.64 13.50 43.91 40.12 0.96
Zhu et al. [29] 0.99 1.50 9.34 21.30 6.92 59.94
Zhu et al. [29] (Densified, 3X) 10.03 7.88 20.30 3.46 3.02 55.31
Zhu et al. [29] (More densified, 10X) 15.88 13.15 11.15 2.09 3.45 54.28

Parasolid [13] 38.52 43.28 3.74 4.95 8.72 0.78

MidSurfer 62.44 24.49 8.36 3.33 1.42 0
MidSurfer (Densified, 3X) 68.25 20.55 8.22 2.42 0.56 0
MidSurfer (More densified, 10X) 70.89 19.34 7.14 2.21 0.42 0

Table 4: The performance of different methods at different stages.

Face Pairing Geometry Extraction
Time(s) Speedups Time(ms) Speedups

Woo et al. [12] 39.21 3.11 -

CAT - 3.41 -1.44
Zhu et al. [29] - 60.79 12.38

Parasolid [13] - 19.89 4.05

MidSurfer (single-threaded) 12.61 - 20.94 4.26
MidSurfer (parallel) 4.91 -

Table 5: The completion rates of different methods at different stages (%).

Face Pairing Geometry Extraction
All Models All FGPs All Models

Woo et al. [12] 24.41 -

CAT - 36.99 19.87
Zhu et al. [29] - 20.00 15.02

Parasolid [13] - 51.99 43.66

MidSurfer 73.71 71.90 69.01

5.1. Comparison with Prior Methods
Geometric accuracy. As shown in Table 3, we first analyzed the
improvement in geometric accuracy of MidSurfer compared to
previous works, specifically the CAT method (Fig. 2) and Zhu
et al. [29] method. The mid-surfaces generated by the different
methods are displayed in Fig. 9. It can be observed that both the
CAT and Zhu’s methods can extract mid-surfaces from the origi-
nal models. However, the generated mid-surfaces are either non-
smooth or extend beyond the model boundaries. Further analysis
of geometric errors in Table 3 reveals that the CAT method per-
forms the worst, as its geometric errors mainly fall within the
[1, 20] interval. This is primarily because the CAT method relies
on meshing results, leading to inaccurate mid-points with signif-
icant positional oscillations. Zhu’s method outperforms the CAT
method, with geometric errors mainly within the [1, 10] interval.
While this method approximates the exact solution by using pro-
jection and intersection, it reports substantial geometric errors
in the [20, 1%] interval (> 50% across various sampling densi-
ties). This is mainly due to its use of the normal direction for
projection, which always fails when the angle between two faces

Figure 9: The comparison of geometric accuracy across different methods. Both
CAT and Zhu’s methods extract mid-surfaces but introduce errors—non-smooth
surfaces or boundary extensions—highlighted in red rectangles.

exceeds 15. Since most variable wall thickness models contain
faces with varying angles, this leads to considerable statistical
errors. In contrast, MidSurfer significantly outperforms the other
two methods, with nearly all sampled points falling within the
[0, 1] interval.

To further demonstrate the impact of sampling density, we
conducted additional experiments with different sampling point
densities. It can be observed that as the density of points in-
creases, the geometric accuracy of all methods improves, espe-
cially for methods reliant on sampling rates, except for the CAT
method, which achieves densification by increasing mesh den-
sity. However, it is worth noting that strategies to improve geo-
metric accuracy through densification come with high computa-
tional costs. In our method, due to its parallel nature, the time
complexity increases linearly with the sampling rate, so we de-
fault to only 1X densification. Based on this, densification strate-
gies for improving geometric accuracy are not ideal. The pro-
posed method in this study significantly enhances the geometric
accuracy of mid-surface models at a lower computational cost.

Performance. Table 4 provides a comparison of the efficiency
across different methods. In the face pairing stage, Woo et
al. [12] involves a virtual decomposition method. For each
model, the concave edges are first identified, followed by the ex-
tension and intersection of these edges to generate several half-
spaces. These half-spaces are then merged into convex cells
before entering the pairing operation. This process heavily de-
pends on basic geometric operations and iterative calls, leading
to poor performance. Additionally, this method only applies to
constant wall-thickness models; for variable wall-thickness mod-
els, it may produce abnormal intersection partitions, generating a
vast number of half-spaces that either cause the program to crash
or result in a sharp increase in computation time. In contrast,
while MidSurfer also takes longer, it still outperforms Woo et

11

al.’s method. This is mainly because MidSurfer effectively uti-
lizes face-adjacent information and eliminates the need for sec-
ondary decomposition. This feature is particularly beneficial for
models with variable wall thickness. Furthermore, MidSurfer’s
more targeted pairing criteria save significant computational ef-
fort, yielding an average performance improvement of 3.11X.

In the geometric extraction stage, MidSurfer was compared
to both the CAT [18] and Zhu et al.’s [29] methods. The re-
sults show that even MidSurfer’s parallel version struggles to
match CAT’s performance, primarily due to CAT’s simplicity
in computation. The core principle of CAT involves systemat-
ically shifting vertices and meshes according to predefined rules
for each discretized mesh form, reducing computational costs
significantly. However, when compared to Zhu et al.’s method,
MidSurfer demonstrated a significant acceleration in computa-
tion. This is because Zhu et al.’s method requires projection
and intersection for each sampling point, resulting in a substan-
tial computational burden, which MidSurfer efficiently reduces,
achieving an average 12.38X speedup. Additionally, we tested
MidSurfer’s performance with and without parallelization. The
results showed that MidSurfer’s design is well-suited for parallel
computation, achieving a 4.26X speedup.

Generalizability. Further analysis of MidSurfer’s generalizabil-
ity across various models, as shown in Table 5, reveals that for
face pairing, the traditional Woo et al. [12] method correctly
identifies only 24.41% of the models in the dataset, while Mid-
Surfer achieves 73.31% accuracy. This is because Woo’s method
only supports constant wall thickness face pairing and all FGP
types are 1-1 face pairs, making it largely unable to reflect the
topological features of the models. In contrast, MidSurfer’s
enhanced face pairing capabilities effectively handle most real-
world models. In the geometric extraction stage, the CAT and
Zhu’s methods perform poorly as they cannot handle 1-n/n-n
FGPs. However, since we consider the [0, 10] interval as cor-
rect geometric mid-surfaces, the CAT method performs better
than Zhu’s method. MidSurfer demonstrates excellent perfor-
mance across all FGPs and models, with success rates of 71.9%
and 69.01%, respectively. This highlights the method’s ability to
effectively extract most variable wall thickness face pair scenar-
ios and its robust performance across all models, even though
there are cases where MidSurfer cannot extract mid-surfaces
(discussed in limitations). Overall, MidSurfer exhibits strong
performance across the board.

5.2. Comparison with Parasolid
We also compared MidSurfer with the current commercial so-

lution provided by Parasolid [13]. It is worth noting that Para-
solid’s method outperforms all existing algorithms, achieving a
geometric accuracy of over 80% in the [0, 1] interval (Table 3).
Due to this advantage, its geometric extraction completion rate
in real-world scenarios is higher than that of the CAT and Zhu
et al, as shown in Table 5 and Fig. 9. Similarly, its performance
shows significant advantages, with improvements of 1.05X and
3.06X compared to the single-threaded versions of MidSurfer
and Zhu et al, respectively, as shown in Table 4. Neverthe-
less, MidSurfer still holds its own advantages, particularly in the
[0, 0.5] interval (MidSurfer: 70.89%, Parasolid: 38.52%), per-
formance (MidSurferparallel: 4.91s, Parasolid: 19.89s, Speedup:
4.05X), and in terms of extraction rates for all FGPs (MidSurfer:
71.90%, Parasolid: 51.99%) and all models (MidSurfer: 69.01%,
Parasolid: 43.66%).

However, the Parasolid API also has some limitations. Firstly,
Parasolid cannot automatically identify left and right faces; users

Figure 10: MidSurfer abstraction failure cases: a) Boundary single faces, b)
Topological deficiency, and c) Multiple wall thickness peaks.

must manually select and input all left and right faces into the
API for extraction. Moreover, as the number of left and right
faces increases, the pairing results are often incorrect. Secondly,
Parasolid’s adaptability for geometric extraction is suboptimal.
For example, swapping the left and right faces for the same face
pair often results in extraction failure (report error codes). Ad-
ditionally, Parasolid struggles with scenarios involving quadric
surfaces (cylinders, cones, spheres, etc.) and freeform surfaces,
likely due to its reliance on geometric parameters to calculate
mid-surfaces. In contrast, MidSurfer employs a method that dis-
cretizes surfaces, performs parallel mid-point extraction, and fits
the final surface, thereby avoiding the aforementioned issues.
Based on this, MidSurfer demonstrates superior geometric accu-
racy and model generalizability compared to both previous meth-
ods and commercial solutions.

6. Conclusion and Limitations

We introduce MidSurfer, a mid-surface abstraction method for
variable-thickness thin-walled models. Our approach leverages
an improved face-pairing method with extended face types and a
parallelized geometric extraction strategy based on two-step mid-
point extraction, enabling rapid and efficient generation of high-
quality simplified models.

Experiments on six real-world benchmarks demonstrate the
accuracy and efficiency of MidSurfer. Additionally, studies on
a manually constructed dataset of 213 thin-walled models fur-
ther highlight MidSurfer’s superior usability and generalizability
compared to existing methods. To our knowledge, no publicly
available geometric modeling algorithm has previously achieved
satisfactory results for this specific task while simultaneously im-
proving performance. Thus, our method makes a valuable con-
tribution by addressing this challenge. Despite these advance-
ments, it has several limitations that warrant further exploration.

Abstraction failures. While MidSurfer delivers accurate results
in most scenarios, it still exhibits limitations in following cases:

• Boundary single faces: it fails to generate mid-surfaces for
boundary cases with single faces (Fig. 10-a). A potential

12

Figure 11: The cases that MidSurfer cannot address, with the red parts indicating
the unprocessable scenarios.

solution is to segment the single face and form a new FGP,
but determining the segmentation boundaries is non-trivial.

• Topological deficiency: for variable-thickness transitions
with rib structures (Fig. 10-b), partial face mispairing may
occur, leading to topological discontinuities at junctions.
Extending adjacent FGP’s mid-surface could mitigate this
issue, but the loss of fine topological details may impact
subsequent analysis tasks.

• Multiple wall thickness peaks: In cases where the model
has multiple local wall thicknesses (Fig. 10-c), MidSurfer
cannot automatically determine the wall thickness thresh-
old for the distance criterion to perform face pairing. For
such models, using the smaller wall thickness peak by de-
fault generally yields better results. However, selecting a
smaller wall thickness may prevent face pairs with larger
thicknesses from being matched, while choosing a larger
wall thickness may result in mis-matching of non-face pairs
(such as lateral faces). The current solution is that Mid-
Surfer returns all candidate wall thickness peaks and their
pairing results, allowing users to manually select the most
accurate one.

Precision. Precision limitations arise from topological and ge-
ometric aspects. Topologically, while mid-surface extraction
should be unique under thin-wall criteria, conflicting topologi-
cal semantics may emerge. Fig. 11 illustrates a simplified exam-
ple: MidSurfer’s result (Fig. 11-a) is algorithmically correct but
may not align with user expectations, as alternative mid-surfaces
(Fig. 11-b) are also valid. This issue stems from the face-pairing
stage, suggesting the need for broader pairing rules to offer multi-
ple topology-semantic options. Geometrically, while MidSurfer
achieves high accuracy for most models, fitting errors accumu-
late when an FGP contains too many faces, drastically reducing
geometric fidelity. Additionally, precision loss during the dis-
cretization is inevitable. Addressing these issues will be crucial
for future improvements.

Performance. Efficiency remains a key concern. In the face-
pairing stage, multi-loop judgments account for most of the com-
putational cost. To enhance performance, an optimized face ad-
jacency graph search algorithm [20] for variable wall thickness
should be considered. In the geometric extraction stage, although
the method benefits from data-independent parallelism, current
CPU-based parallelization has room for improvement. GPU ac-
celeration presents a promising avenue, particularly for parallel
searches [32] and distance computing [33], which are integral to
our algorithm. Exploring these optimizations could further ad-
vance mid-surface abstraction techniques.

References

[1] P. Dabke, V. Prabhakar, S. Sheppard, Using features to support finite el-
ement idealizations, in: International Design Engineering Technical Con-

ferences and Computers and Information in Engineering Conference, Vol.
13805, American Society of Mechanical Engineers, 1994, pp. 183–193.

[2] C. G. Armstrong, Modelling requirements for finite-element analysis,
Computer-aided design 26 (7) (1994) 573–578.

[3] S. Bouix, J. C. Pruessner, D. L. Collins, K. Siddiqi, Hippocampal shape
analysis using medial surfaces, Neuroimage 25 (4) (2005) 1077–1089.

[4] Y. Li, W. Wang, X. Liu, Y. Ma, Definition and recognition of rib features in
aircraft structural part, International Journal of Computer Integrated Man-
ufacturing 27 (1) (2014) 1–19.

[5] A. Thakur, A. G. Banerjee, S. K. Gupta, A survey of CAD model simplifica-
tion techniques for physics-based simulation applications, Computer-Aided
Design 41 (2) (2009) 65–80.

[6] R. Donaghy, C. G. Armstrong, M. A. Price, Dimensional reduction of sur-
face models for analysis, Engineering with computers 16 (2000) 24–35.

[7] M. Ramanathan, B. Gurumoorthy, Generating the mid-surface of a solid
using 2D mat of its faces, Computer-Aided Design and Applications 1 (1-
4) (2004) 665–674.

[8] W. R. Quadros, An approach for extracting non-manifold mid-surfaces of
thin-wall solids using chordal axis transform, Engineering with computers
24 (3) (2008) 305–319.

[9] D. C. Nolan, C. M. Tierney, C. G. Armstrong, T. T. Robinson, J. E. Makem,
Automatic dimensional reduction and meshing of stiffened thin-wall struc-
tures, Engineering with Computers 30 (2014) 689–701.

[10] M. Rezayat, Midsurface abstraction from 3D solid models: general theory
and applications, Computer-Aided Design 28 (11) (1996) 905–915.

[11] D.-P. Sheen, T.-g. Son, C. Ryu, S. H. Lee, K. Lee, Dimension reduc-
tion of solid models by mid-surface generation, International Journal of
CAD/CAM 7 (1).

[12] Y. Woo, Abstraction of mid-surfaces from solid models of thin-walled parts:
A divide-and-conquer approach, Computer-Aided Design 47 (2014) 1–11.

[13] S. D. I. Software, Parasolid, https://plm.sw.siemens.com/en-US/
plm-components/parasolid (2022).

[14] H. Blum, A transformation for extracting new descriptions of shape, Mod-
els for the perception of speech and visual form (1967) 362–380.

[15] D. J. Sheehy, C. G. Armstrong, D. J. Robinson, Computing the medial sur-
face of a solid from a domain Delaunay triangulation, in: Proceedings of
the third ACM symposium on Solid modeling and applications, 1995, pp.
201–212.

[16] Y.-G. Lee, K. Lee, Computing the medial surface of a 3-D boundary repre-
sentation model, Advances in Engineering Software 28 (9) (1997) 593–605.

[17] L. Prasad, Morphological analysis of shapes, CNLS newsletter 139 (1)
(1997) 1997–07.

[18] W. R. Quadros, K. Shimada, Hex-layer: Layered all-hex mesh generation
on thin section solids via chordal surface transformation., in: IMR, 2002,
pp. 169–180.

[19] K. Kwon, B. C. Lee, S. Chae, Medial surface generation using chordal
axis transformation in shell structures, Computers & structures 84 (26-27)
(2006) 1673–1683.

[20] H. Lee, Y.-Y. Nam, S.-W. Park, Graph-based midsurface extraction for fi-
nite element analysis, in: 2007 11th International Conference on Computer
Supported Cooperative Work in Design, IEEE, 2007, pp. 1055–1058.

[21] D.-P. Sheen, T.-g. Son, D.-K. Myung, C. Ryu, S. H. Lee, K. Lee, T. J. Yeo,
Transformation of a thin-walled solid model into a surface model via solid
deflation, Computer-Aided Design 42 (8) (2010) 720–730.

[22] C. S. Chong, A. S. Kumar, K. Lee, Automatic solid decomposition and
reduction for non-manifold geometric model generation, Computer-Aided
Design 36 (13) (2004) 1357–1369.

[23] H. Zhu, Y. Shao, Y. Liu, J. Zhao, Automatic hierarchical mid-surface ab-
straction of thin-walled model based on rib decomposition, Advances in
Engineering Software 97 (2016) 60–71.

[24] T. Robinson, C. Armstrong, R. Fairey, Automated mixed dimensional mod-
elling from 2D and 3D CAD models, Finite elements in analysis and design
47 (2) (2011) 151–165.

[25] Y. H. Kulkarni, A. Sahasrabudhe, M. Kale, Computation of midsurface by
feature-based simplification–abstraction–decomposition, Journal of Com-
puting and Information Science in Engineering 17 (1) (2017) 011006.

[26] Y. H. Kulkarni, A. Sahasrabudhe, M. Kale, Leveraging feature generaliza-
tion and decomposition to compute a well-connected midsurface, Engineer-
ing with Computers 33 (1) (2017) 159–170.

[27] J. R. Shewchuk, Delaunay refinement mesh generation, Carnegie Mellon
University, 1997.

[28] J. R. Shewchuk, Delaunay refinement algorithms for triangular mesh gen-
eration, Computational geometry 22 (1-3) (2002) 21–74.

[29] H. Zhu, Y. Shao, Y. Liu, C. Li, Mid-surface abstraction for complex thin-

13

https://plm.sw.siemens.com/en-US/plm-components/parasolid
https://plm.sw.siemens.com/en-US/plm-components/parasolid

wall models based on virtual decomposition, International Journal of Com-
puter Integrated Manufacturing 29 (8) (2016) 821–838.

[30] OpenMP ARB, OpenMP, https://www.openmp.org/ (2024).
[31] L. Piegl, W. Tiller, The NURBS Book, Springer Science & Business Media,

2012.
[32] H. Zhu, Y. Liu, H. Wang, J. Zhao, Efficient construction of the medial axis

for a CAD model using parallel computing, Engineering with Computers
34 (2018) 413–429.

[33] P. Fan, W. Wang, R. Tong, H. Li, M. Tang, gDist: efficient distance compu-
tation between 3D meshes on GPU, in: SIGGRAPH Asia 2024 Conference
Papers, 2024, pp. 1–11.

14

https://www.openmp.org/

MidSurfer: Efficient Mid-surface Abstraction from Variable Thin-walled Models
Supplementary Material

1. Theorems and Lemmas

Theorem 1. Let S le f t and S right be two surfaces in FGle f t and
FGright, respectively, and let L be a line intersecting both sur-
faces at points A ∈ S le f t and B ∈ S right. There exists at least
one point Q0 ∈ L between A and B such that Q0 lies on the mid-
surface between S le f t and S right.

Proof. For any point Q ∈ L, define the shortest distance func-
tions:

Dist(Q, S le f t) = inf
P∈S le f t

∥Q−P∥, Dist(Q, S right) = inf
P∈S right

∥Q−P∥.

(1)
S le f t and S right are closed sets, so their distance functions
Dist(Q, S le f t) and Dist(Q, S right) are continuous over R3, thus
both distance functions are continuous on L. Construct the func-
tion f (Q) = Dist(Q, S le f t) − Dist(Q, S right). At endpoints:

f (A) = Dist(A, S le f t) − Dist(A, S right) = 0 − Dist(A, S right) < 0,
(2)

f (B) = Dist(B, S le f t) − Dist(B, S right) = Dist(B, S right) − 0 > 0,
(3)

The function f (Q) is continuous on the line segment [A, B] ⊂
L. Since f (A) < 0 and f (B) > 0, by the Intermediate Value
Theorem, there exists at least one point Q0 ∈ (A, B) such that:

f (Q0) = 0 =⇒ Dist(Q0, S le f t) = Dist(Q0, S right). (4)

Thus, Q0 lies on the mid-surface.

Lemma 1 (Convex Projection Invariance). Let T be a convex
triangle in M, and let A, B ∈ L be two points on a line segment
such that their closest points on T lie strictly inside T . Then,
for any Q ∈ AB, the closest point PQ ∈ T to Q also lies strictly
inside T .

Proof. By convexity of T and projective continuity, the line seg-
ment PAPB ⊂ T . Parametrize Q = (1 − λ)A + λB and define
PQ = (1− λ)PA + λPB, by convexity, PQ ∈ T , and the distance of
Q to PQ follows:

Distmin(Q,PQ) = Q − PQ = (1 − λ)(A − PA) + λ(B − PB). (5)

Since
A − PA ⊥ T, B − PB ⊥ T, (6)

and the vector Q−PQ is a linear combination, it remains orthog-
onal to the T at PQ, thereby ensuring PQ is the closest point to Q
on T .

Theorem 2. Let Mle f t and Mright be triangular meshes generated
by two face groups (FG), and let L be a line segment intersecting
both meshes. Suppose two points A, B ∈ L (between the intersec-
tions of L with M1 and M2) are such that:

1. A and B share the same closest triangle indices Ta ∈ Mle f t
and Tb ∈ Mright.

Table 1: The statistical results of efficiency at different sampling points and par-
allelism for different benchmarks (s).

M2 M3 M4 M5 M6

N=8 parallel 0.031 0.355 0.068 0.384 0.644
single-threaded 0.122 0.973 0.220 1.593 2.011

N=16 parallel 0.029 0.252 0.085 0.342 0.589
single-threaded 0.108 0.963 0.251 1.363 1.801

N=32 parallel 0.047 0.321 0.105 0.509 0.798
single-threaded 0.204 1.779 0.368 2.624 3.313

Note: The data in the table represents the results of the Mid-point Extraction
stage. Model 1, being a constant wall thickness model, is not listed in the table.

2. Ta and Tb are convex.

Then, for any point Q ∈ AB, the closest triangle indices of Q to
Mle f t and Mright remain Ta and Tb, respectively.

Proof. For Mle f t, by Lemma 1, if the closest points of A and B
to Ta lie inside of Ta, then the closest points of all points on the
segment AB also lie inside of Ta. If the closest points of A and B
lie on the edge or vertex of Ta, then the closest points of points
on AB may move along the edge or vertex but still belong to Ta.
Therefore, for all points on AB, the index of the closest face to
Mle f t is Ta. Same proof for Mright.

2. Performance of Different Sampling Points

We evaluated the computational efficiency in the mid-point
extraction based on the number of sampling points and the use
of parallel computing, as detailed in Table 1. For all models,
the best efficiency was achieved with 16 sampling points (i.e.,
N = 16) and parallel acceleration (the default setting used in
the algorithm). Notably, we pre-tested the impact of different
thread counts on the algorithm, revealing only a ±2% variation
in efficiency. Thus, we used the default thread count (i.e., the
CPU’s core count). When N = 8, the parallel strategy achieved a
speedup of 2.7X−4.2X, but the overall time was generally longer
than with N = 16. This is primarily due to insufficient sampling
points leading to increased recursion and more iterations in the
binary search. For example, in Model 3, with N = 8, the average
recursion count was 1.32, and the average binary search count
was 6.75, compared to 1.12 and 6.03, respectively, with N = 16.
Similarly, with N = 32, the average speedup ranged from 3.5X to
5.5X, demonstrating enhanced parallelism with more sampling
points. However, despite the improved parallel efficiency and
favorable recursion (1.03) and binary search counts (4.94), this
configuration was slower than the N = 16 case across all models.
This is mainly because excessive sampling points reduce com-
putational efficiency, as more points with no impact on the final
result are calculated. An exception in Table 1 is Model 4, which
performed better with N = 8 than N = 16. This is attributed to

Preprint submitted to Elsevier September 3, 2025

Figure 1: Examples of different transition scenarios, where the highlighted areas
are transition areas.

the gentle transitions in Model 4’s variable wall thickness (low
curvature variation), allowing fewer sampling points to quickly
identify triangular meshes with the same shortest distance. Ad-
ditionally, the model’s low discretization level, resulting in larger
average triangular mesh areas, made it easier to hit the same
meshes. However, this configuration significantly reduces the
geometric accuracy of the generated mid-surface. Based upon
this, N = 16 was finalized as the default value.

3. Construction of Thin-walled Model Dataset

All models were selected from various datasets using key-
words such as “thin-walled parts,” “sheet metal parts,” and “plas-
tic shells.” We searched databases including the Onshape public
dataset1, GrabCAD Library 2, and the ABC dataset [1], covering
categories such as aerospace, automotive, industrial design, and
machine design. After the initial search, we manually curated
the collected models, resulting in a dataset of 213 representative
models comprising 7894 faces. All models are thin-walled and
include various wall thickness types, transition scenarios, and
face pair combinations.

Further, the models were manually classified and annotated.
To reflect the diversity of the database, the models were di-
vided into four categories based on their corresponding do-
mains: aerospace, automotive, industrial/mechanical design, and
others, with the quantity and proportion of each category pre-
sented in Table 2. Moreover, To illustrate the dataset’s compo-
sition, the count of constant and variable wall thickness models
were recorded, and categorized into 1-1 and 1-n/n-n FGP types,
along with various transition scenarios, such as chamfers(-like),
fillets(-like) structures (see Fig. 1). These statistics highlight the
dataset’s complexity, as shown in Table 3. Moreover, 12 repre-
sentative models and their extracted mid-surfaces were visually
displayed with corresponding model data in Figs. 2-3, showcas-
ing the diversity and complexity of the model dataset across dif-
ferent domains, wall thicknesses, and FGP types, ensuring the
dataset’s validity for evaluation.

1https://cad.onshape.com/documents?nodeId=3&resourceType=

filter
2https://grabcad.com/library

Table 2: The statistical data for each domain of the model in the dataset.

Count Percentage

Aerospace 45 21.12%

Automotive 52 24.41%

Industry/Machine Design 75 35.21%

Others 41 19.25%

Total 213 -

Table 3: The statistical data of each face group pair (FGP) type and transition
scenarios in the dataset.

Constant Variable
Wall-thickness Wall-thickness

Count Percentage Count Percentage

1-1 FGPs 38 17.84% 30 14.08%

1-n/n-n FGPs 27 12.68% 118 55.40%

Chamfer/Fillet (-like) 22 10.33% 121 56.81%

Total 65 30.52% 148 69.48%

References

[1] S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov, E. Burnaev,
M. Alexa, D. Zorin, D. Panozzo, ABC: A big CAD model dataset for geo-
metric deep learning, in: Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2019, pp. 9601–9611.

2

https://cad.onshape.com/documents?nodeId=3&resourceType=filter
https://cad.onshape.com/documents?nodeId=3&resourceType=filter
https://grabcad.com/library

Figure 2: Visual examples of 12 representative models in the dataset. The yellow boxes indicate constant wall-thickness models, and the orange boxes indicate variable
wall-thickness models. The domain, FGP type, and parameter settings for each model are listed. The blue boxes show the default parameter settings of our method.

3

Figure 3: Visual examples of 12 representative models in the dataset. The orange boxes indicate variable wall-thickness models. The domain, FGP type, and parameter
settings for each model are listed. The blue boxes show the default parameter settings of our method.

4

	Introduction
	Related Works
	Mid-surface Abstraction Method
	Face Pairing Technique
	Mid-surface Geometry Extraction

	Algorithm Pipeline
	Improved Face Pairing Method
	Abstraction of Mid-surface Geometry

	Implementation and Results
	Correctness and Accuracy
	Performance

	Comparison and Analysis
	Comparison with Prior Methods
	Comparison with Parasolid

	Conclusion and Limitations
	Theorems and Lemmas
	Performance of Different Sampling Points
	Construction of Thin-walled Model Dataset

