
PSCC: Parallel Self-Collision Culling with

Spatial Hashing on GPUs

Min Tang1,2, Zhongyuan Liu1, Ruofeng Tong1, Dinesh Manocha1,3

1Zhejiang University
2Alibaba-Zhejiang University Joint Institute of Frontier Technologies

3University of Maryland at College Park

https://min-tang.github.io/home/PSCC/

https://min-tang.github.io/home/PSCC/
https://min-tang.github.io/home/PSCC/
https://min-tang.github.io/home/PSCC/

Outline

• Motivation & Challenges

• Related Work

• Main Results

• Algorithms

– Parallel Self-collision Culling

– Extended Spatial Hashing

– Optimized Cloth Simulation Pipeline

• Result & Benchmarks

• Conclusions

Outline

• Motivation & Challenges

• Related Work

• Main Results

• Algorithms

– Parallel Self-collision Culling

– Extended Spatial Hashing

– Optimized Cloth Simulation Pipeline

• Result & Benchmarks

• Conclusions

Challenges

• Collision handling remains a major bottleneck in

deformable simulation

• Major bottleneck in cloth simulation [Tang et al. 2016]

• Most parallel GPU-base collision detection algorithms do

not perform self-collision culling [Tang et al. 2016; Weller

et al. 2017]

On average: 3.7s/frame

Inter-object Collision: 15.6%

Self-Collision: 73%

Challenges

• Collision handling remains a major bottleneck in

deformable simulation

• Major bottleneck in cloth simulation [Tang et al. 2016]

• Most parallel GPU-base collision detection algorithms do

not perform self-collision culling [Tang et al. 2016; Weller

et al. 2017]

On average: 3.7s/frame

Inter-object Collision: 15.6%

Self-Collision: 73%

Motivation

• We want to design an optimized collision handling scheme

with following capabilities:

– Lower memory overhead: most commodity GPUs have less than

6GB memory (e.g., NVIDIA GeForce GTX 1060)

• CAMA runs on Tesla K40c with 12G memory [Tang et al. 2016]

– Faster collision detection: A key bottleneck in interactive

performance

• CAMA needs 4-5s/frames for its benchmarks [Tang et al. 2016]

– Parallel cloth simulation: should integrate with parallel, GPU-

friendly deformable simulation algorithms

Outline

• Motivation & Challenges

• Related Work

• Main Results

• Algorithms

– Parallel Self-collision Culling

– Extended Spatial Hashing

– Optimized Cloth Simulation Pipeline

• Result & Benchmarks

• Conclusion

Related Work

 • Self-collision Culling

• Spatial Hashing on GPUs

• Parallel Cloth Simulation on Multi-core /

Many-core Processors

Related Work

 • Self-collision Culling
– Normal cone culling [Provot 1997, Schvartzman et al.

2010, Tang et al. 2009, Wang et al. 2017]

– Energy-based culling [Barbic and James 2010, Zheng

and James 2012]

– Radial-based culling [Wong et al. 2013; Wong and

Cheng 2014]

– Most of them are serial algorithm running on single

CPU core

Related Work

 • Spatial Hashing on GPU
– Used for collision detection [Lefebvre and Hoppe 2006]

– Uniform grids [Pabst et al. 2010] or two-layer grids

[Faure et al. 2012]

– Hierarchical grids [Weller et al. 2017]

– No self-collision culling

– Can be used for rigid and deformable simulation

Related Work

 • Parallel Cloth Simulation on Multi-core /

Many-core Processors
– Multi-core algorithms [Selle et al. 2009]

– GPU parallelization for regular-shaped cloth [Tang et

al. 2013]

– CAMA: GPU streaming + Arbitray topology + robust

collision handling [Tang et al. 2016]

– Large memory overhead

– Takes a few seconds per frame on a Tesla GPU

Outline

• Motivation & Challenge

• Related Work

• Main Results

• Algorithms

– Parallel Self-collision Culling

– Extended Spatial Hashing

– Optimized Cloth Simulation Pipeline

• Result & Benchmarks

• Conclusion

Main Results

 A GPU-based self-collision culling method; combines

normal cone culling and spatial hashing:

1. Parallel self-collision culling based on normal cone

test front;

2. Extended spatial-hashing for inter-object collisions

and self-collisions;

3. New, optimized collision handling pipeline for cloth

simulation.

Benefits

1. Lower memory overhead: 5-7X reduction than prior

methods

2. Faster GPU-based collision detection between

deformable models: 6-8X faster

3. Faster cloth simulation algorithm on GPUs: 4-6X

faster

Outline

• Motivation & Challenge

• Related Work

• Main Results

• Algorithms

– Parallel Self-collision Culling

– Extended Spatial Hashing

– Optimized Cloth Simulation Pipeline

• Result & Benchmarks

• Conclusion

Parallel Normal Cone Culling

Conventional

top-down

culling is

replaced by

parallel culling;

Maintain a

Normal Cone

Test Front

(NCTF).

Parallel Normal Cone Culling

Front update using

sprouting and

shrinking operators

Conventional Spatial Hashing

GPU Gems 3: Chapter 32. Broad-Phase Collision Detection with

CUDA, Scott Le Grand, NVIDA.

CellIDs

• Distribute all the objects into cells based on a hash function

• Intersection tests for all the objects in the same cell

• No self-collision culling between deformable objects

Extended Spatial Hashing

To perform both inter-object and intra-object collision

culling, CellID (spatial information) and ConeID (normal

cone information) are used as hash keys

Extended Spatial Hashing

To perform both inter-object and intra-object collision

culling, CellID (spatial information) and ConeID (normal

cone information) are used as hash keys

ConeIDs

Extended Spatial Hashing

Fewer triangle pairs are tested for collisions: due to self-

collision culling:

Extended Spatial Hashing

• Triangle pairs from broad phrase culling

• With and without CNC culling

• Fewer false positives with CNC culling

Extended Spatial Hashing

• Building Workload

Hash Table on

GPU

• GPU-based sparse

matrix assembly

[Tang et al. 2016]

New Collision Handling Pipeline

New Collision Handling Pipeline

In this benchmark, the number of BV tests and

running time of broad phrase culling is reduced by

51.1% and 53.3%, respectively.

Outline

• Motivation & Challenge

• Related Work

• Main Results

• Algorithms

– Parallel Self-collision Culling

– Extended Spatial Hashing

– Optimized Cloth Simulation Pipeline

• Results & Benchmarks

• Conclusions

Performance

• Evaluated on NVIDIA Tesla K40c, GeForce GTX 1080,
and GeForce GTX 1080 Ti;

• Complex benchmarks: 80K-200K triangles
– High number of inter-object and intra-object collisions & folds

• Less than 1 second per frame for cloth simulation on
GTX 1080 and 1080 Ti

• Considerable speedups over prior algorithms

Performance Comparison

• Benchmark
Andy

• 127K triangles

• Time step:
1/25s

• NVIDIA
GeForce GTX
1080

• Average cloth
simulation time:
0.84s/frame

• Played at 24x
speed

Performance Comparison CAMA

3.7s/frame on

average

Our algorithm

0.84s/frame on

average

Benchmark: Twisting

• 200K triangles

• Time step:
1/200s

• Multiple layers
and contacts

• Average cloth
simulation time:
0.97s/frame

• Played at 28x
speed

1st layer 2nd layer

3rd layer All layers

Benchmark: Flag

• 80K triangles

• Time step:
1/100s

• Multiple self-
collisions

• Average cloth
simulation time:
0.35s/frame

• Played at 10x
speed

Benchmark: Sphere

• 200K triangles

• Time step:
1/300s

• Multiple layers
and contacts

• Average cloth
simulation time:
0.94s/frame

• Played at 26x
speed

Benchmark: Falling

• 172K triangles

• Time step: 1/30s

• Multiple inter-
object and intra-
object collisions

• Average cloth
simulation time:
0.51s/frame

• Played at 14x
speed

Benchmark: Bishop

• 124K triangles

• Time step:
1/30s

• Multiple layers
and contacts

• Average cloth
simulation time:
0.94s/frame

• Played at 26x
speed

Outline

• Motivation & Challenge

• Related Work

• Main Results

• Algorithms

– Parallel Self-collision Culling

– Extended Spatial Hashing

– Optimized Cloth Simulation Pipeline

• Results & Benchmarks

• Conclusions

Main Results

• Novel parallel GPU-based self-collision culling algorithm;

• Considerable speedups over prior GPU-based
algorithms;

• Almost real-time cloth simulation on complex
benchmarks on a commodity GPU

Limitations

• For tangled cloth, collision detection and penetration

handling still remain a major efficiency bottleneck;

• For meshes undergoing topological changes, the normal

cones and their associated contour edges need to be

updated on-the-fly.

Our algorithm

0.84s/frame on

average

Future work

• Faster collision handling

• Distance-field based collision handling

• Integration with cloth design and VR systems

Acknowledgements

• National Key R&D Program of China
(2017YFB1002703), NSFC (61732015, 61572423,
61572424), the Science and Technology Project of
Zhejiang Province (2018C01080), and Zhejiang
Provincial NSFC (LZ16F020003).

• NVIDIA for hardware donation (NVIDIA Tesla K40c)

• Providers of all animation data

Q&A

 Thanks!

