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Motivation

 We want to design an optimized collision handling scheme
with following capabillities:

— Lower memory overhead: most commodity GPUs have less than
6GB memory (e.g., NVIDIA GeForce GTX 1060)

« CAMA runs on Tesla K40c with 12G memory [Tang et al. 2016]

— Faster collision detection: A key bottleneck in interactive
performance
 CAMA needs 4-5s/frames for its benchmarks [Tang et al. 2016]

— Parallel cloth simulation: should integrate with parallel, GPU-
friendly deformable simulation algorithms
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Related Work

» Self-collision Culling

— Normal cone culling [Provot 1997, Schvartzman et al.
2010, Tang et al. 2009, Wang et al. 2017]

— Energy-based culling [Barbic and James 2010, Zheng
and James 2012]

— Radial-based culling [Wong et al. 2013; Wong and
Cheng 2014]



Related Work

« Spatial Hashing on GPU

— Used for collision detection [Lefebvre and Hoppe 2006]

— Uniform grids [Pabst et al. 2010] or two-layer grids
[Faure et al. 2012]

— Hierarchical grids [Weller et al. 2017]



Related Work

 Parallel Cloth Simulation on Multi-core /

Many-core Processors

— Multi-core algorithms [Selle et al. 2009]

— GPU parallelization for regular-shaped cloth [Tang et
al. 2013]

— CAMA: GPU streaming + Arbitray topology + robust
collision handling [Tang et al. 2016]
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Main Results

A GPU-based self-collision culling method; combines
normal cone culling and spatial hashing:

1. Parallel self-collision culling based on normal cone
test front;

2. Extended spatial-hashing for inter-object collisions
and self-collisions;

3. New, optimized collision handling pipeline for cloth
simulation.



Benefits

Lower memory overhead: 5-7X reduction than prior
methods

Faster GPU-based collision detection between
deformable models: 6-8X faster

Faster cloth simulation algorithm on GPUs: 4-6X
faster
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shrinking operators



GPU Gems 3: Chapter 32. Broad-Phase Collision Detection with
CUDA, Scott Le Grand, NVIDA.
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Distribute all the objects into cells based on a hash function

Intersection tests for all the objects in the same cell

No self-collision culling between deformable objects




I
I |
= Cell A »<4—Cell B—» =

|
[|
q LE L] L2 L L Ll A LLE :
I
i

|
(a) Spatial hashing :Nith CelllD only

| |

| |

- - Cell A - I-'-I—CI ell B I-':-l Cell ...——p
|

|

|

|

i

|

|

|
|
|
i
|
|
<4-Node X' 4——Node Y—p'aNode ...»

(b) Spatial hashing with CelllD and ConelD

To perform both inter-object and intra-object collision
culling, CelllD (spatial information) and ConelD (normal
cone information) are used as hash keys
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(a) Spatial hash
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(b) Spatial hashing with CelllD and ConelD

To perform both inter-object and intra-object collision
culling, CelllD (spatial information) and ConelD (normal
cone information) are used as hash keys
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« Triangle pairs from broad phrase culling
« With and without CNC culling
* Fewer false positives with CNC culling
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In this benchmark, the number of BV tests and
running time of broad phrase culling is reduced by
51.1% and 53.3%, respectively.
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Performance

Evaluated on NVIDIA Tesla K40c, GeForce GTX 1080,
and GeForce GTX 1080 Ti;

Complex benchmarks: 80K-200K triangles
— High number of inter-object and intra-object collisions & folds

Less than 1 second per frame for cloth simulation on
GTX 1080 and 1080 Ti

Considerable speedups over prior algorithms
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Benchmark: Twisting

200K triangles 1 layer 2ndlayer
Time step:
1/200s

Multiple layers
and contacts

Average cloth —

simulation time:
0.97s/frame 3rd layer Alldayers

Played at 28x
speed




Benchmark: Flag

80K triangles

Time step:
1/100s

Multiple self-
collisions

Average cloth
simulation time:
0.35s/frame

Played at 10x ' |

speed

S




Benchmark: Sphere

d

200K triangles
Time step:
1/300s

Multiple layers
and contacts

Average cloth
simulation time:
0.94s/frame

Played at 26x
speed

»




Benchmark: Falling

172K triangles (-
Time step: 1/30s \ )

Multiple inter-
object and intra-
object collisions

Average cloth
simulation time:
0.51s/frame

Played at 14x
speed




1/30s

Multiple layers
and contacts

« Average cloth
simulation time:

0.94s/frame

Played at 26x
speed
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Main Results

Novel parallel GPU-based self-collision culling algorithm;

Considerable speedups over prior GPU-based
algorithms;

Almost real-time cloth simulation on complex
benchmarks on a commodity GPU



Seconds

S L N

0.84s/frame on
average |

1 ' 1l
0 -
1 301 601 S01 1201 1501 1801 210

* For meshes undergoing topological changes, the normal

cones and their associated contour edges need to be
updated on-the-fly.

1 |
1 2401 2 e

701 3001 Frames




 Integration with cloth design and VR systems
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