Spatial Hashing on GPUs

https://min-tang.github.io/home/PSCC/

Min Tang!?, Zhongyuan Liu!, Ruofeng Tong?!, Dinesh Manochal-3

1Zhejiang University
2Alibaba-Zhejiang University Joint Institute of Frontier Technologies
3University of Maryland at College Park

https://min-tang.github.io/home/PSCC/
https://min-tang.github.io/home/PSCC/
https://min-tang.github.io/home/PSCC/

Outline

Motivation & Challenges
Related Work
Main Results

Algorithms

— Parallel Self-collision Culling

— Extended Spatial Hashing

— Optimized Cloth Simulation Pipeline

Result & Benchmarks
Conclusions

Outline

Motivation & Challenges
Related Work
Main Results

Algorithms

— Parallel Self-collision Culling

— Extended Spatial Hashing

— Optimized Cloth Simulation Pipeline

Result & Benchmarks
Conclusions

Seconds)
H Misc

B Penetration Handling

» Narrow Phrase

On average: 3.7s/frame 8 Broad Phrase
Inter-object Collision: 15.6% B Time Integration
Self-Collision: 73%

Ly
MMMN\N\MWM\W\M\MMMM
ot

1201 1501 1801 2101 2401 2701 3001 Frames

Seconds

On average: 3.7s/frame
Inter-object Collision: 15.6%
Self-Collision: 73%

10%
n]

R TR
ETHA MR

1 301 901 1201 1501

1801

2101

B Inter-obje ct Collision
W self-Collision
B Misc

BTime Integration

2401 2701 3001 Frames

Motivation

 We want to design an optimized collision handling scheme
with following capabillities:

— Lower memory overhead: most commodity GPUs have less than
6GB memory (e.g., NVIDIA GeForce GTX 1060)

« CAMA runs on Tesla K40c with 12G memory [Tang et al. 2016]

— Faster collision detection: A key bottleneck in interactive
performance
 CAMA needs 4-5s/frames for its benchmarks [Tang et al. 2016]

— Parallel cloth simulation: should integrate with parallel, GPU-
friendly deformable simulation algorithms

Outline

Motivation & Challenges
Related Work
Main Results

Algorithms

— Parallel Self-collision Culling

— Extended Spatial Hashing

— Optimized Cloth Simulation Pipeline

Result & Benchmarks
Conclusion

Related Work

» Self-collision Culling
« Spatial Hashing on GPUs

 Parallel Cloth Simulation on Multi-core /
Many-core Processors

Related Work

» Self-collision Culling

— Normal cone culling [Provot 1997, Schvartzman et al.
2010, Tang et al. 2009, Wang et al. 2017]

— Energy-based culling [Barbic and James 2010, Zheng
and James 2012]

— Radial-based culling [Wong et al. 2013; Wong and
Cheng 2014]

Related Work

« Spatial Hashing on GPU

— Used for collision detection [Lefebvre and Hoppe 2006]

— Uniform grids [Pabst et al. 2010] or two-layer grids
[Faure et al. 2012]

— Hierarchical grids [Weller et al. 2017]

Related Work

 Parallel Cloth Simulation on Multi-core /

Many-core Processors

— Multi-core algorithms [Selle et al. 2009]

— GPU parallelization for regular-shaped cloth [Tang et
al. 2013]

— CAMA: GPU streaming + Arbitray topology + robust
collision handling [Tang et al. 2016]

Outline

Motivation & Challenge
Related Work
Main Results

Algorithms

— Parallel Self-collision Culling

— Extended Spatial Hashing

— Optimized Cloth Simulation Pipeline

Result & Benchmarks
Conclusion

Main Results

A GPU-based self-collision culling method; combines
normal cone culling and spatial hashing:

1. Parallel self-collision culling based on normal cone
test front;

2. Extended spatial-hashing for inter-object collisions
and self-collisions;

3. New, optimized collision handling pipeline for cloth
simulation.

Benefits

Lower memory overhead: 5-7X reduction than prior
methods

Faster GPU-based collision detection between
deformable models: 6-8X faster

Faster cloth simulation algorithm on GPUs: 4-6X
faster

Outline

Motivation & Challenge
Related Work
Main Results

Algorithms

— Parallel Self-collision Culling

— Extended Spatial Hashing

— Optimized Cloth Simulation Pipeline

Result & Benchmarks
Conclusion

replaced by
parallel culling;

Maintain a
Normal Cone
Test Front
(NCTF).

shrinking operators

GPU Gems 3: Chapter 32. Broad-Phase Collision Detection with
CUDA, Scott Le Grand, NVIDA.

Pass 40, CelllDs
(Jo1,02]; 04 5 6 6
(02,04.. 2] ol | =
(02,03..)

(fo2,09..) 7| & 8]
4 3 4

Distribute all the objects into cells based on a hash function

Intersection tests for all the objects in the same cell

No self-collision culling between deformable objects

I
I |
= Cell A »<4—Cell B—» =

|
[|
q LE L] L2 L L Ll A LLE :
I
i

|
(a) Spatial hashing :Nith CelllD only

| |

| |

- - Cell A - I-'-I—CI ell B I-':-l Cell ...——p
|

|

|

|

i

|

|

|
|
|
i
|
|
<4-Node X' 4——Node Y—p'aNode ...»

(b) Spatial hashing with CelllD and ConelD

To perform both inter-object and intra-object collision
culling, CelllD (spatial information) and ConelD (normal
cone information) are used as hash keys

ConelDs

(a) Spatial hash

2 - 1L

<4-Node X' 4——Node Y—p'<«Node ...»

(b) Spatial hashing with CelllD and ConelD

To perform both inter-object and intra-object collision
culling, CelllD (spatial information) and ConelD (normal
cone information) are used as hash keys

r
Ninter - Ninter

M pairs

4
m Without CNC Culling

3.5 =
3 rm'*". 3

2.5 + -
2

1.5

1

101 201 301 401 501 601 701 801 901 1001 1101 1201 frame

« Triangle pairs from broad phrase culling
« With and without CNC culling
* Fewer false positives with CNC culling

[Tang et al. 2016]

BVH

A : Nodeld 0

B : Nodeld 1

L 0 N o B W N RO

Cellido

Nodeld0

-~ {To[Ta[r2[T3 T4 76

Cellld3

Nodeld2

Cellid2

Nodeld1

Cellid2

Nodeld0

77 ra[TaTagTI1

Triangle Hash Table

cg——\‘
I

Cellid2

T =
VA

(N

v

Workload Hash Table

S

)

v —ZaiE

S - 0PIIRD

Proximity Checking Implicit Time Integration

Penetration Handling

Broad Phrase Sparse Linear System
(BVTT Front Tracking) Assembly

Broad Phrase
(BVTT Front Tracking)

Narrow Phrase Sparse Linear System
(Pair-wise DCD) Sglving

Narrow Phrase
(Pair-wise CCD)

T

(a) Prior Pipeline

- . Penetration Handling &
Implicit Time Integration Proximity Checking
Sparse Linear System Broad Phrase
—» Assembly ~» | (Spatial Hashing)
Sparse Linear System Narrow Phrase
Solving (Pair-wise CCD/DCD)

T

(b) Current Pipeline

In this benchmark, the number of BV tests and
running time of broad phrase culling is reduced by
51.1% and 53.3%, respectively.

Outline

Motivation & Challenge
Related Work
Main Results

Algorithms

— Parallel Self-collision Culling

— Extended Spatial Hashing

— Optimized Cloth Simulation Pipeline

Results & Benchmarks
Conclusions

Performance

Evaluated on NVIDIA Tesla K40c, GeForce GTX 1080,
and GeForce GTX 1080 Ti;

Complex benchmarks: 80K-200K triangles
— High number of inter-object and intra-object collisions & folds

Less than 1 second per frame for cloth simulation on
GTX 1080 and 1080 Ti

Considerable speedups over prior algorithms

127K triangles

Time step:
1/25s

NVIDIA
GeForce GTX

1080

Average cloth
simulation time:
0.84s/frame

Played at 24x
Speed

m Misc

® Penetration Handling

m Narrow Phrase

M Broad Phrase

B Time Integration

901

1201

1501

1801

2101

2401 2701 3001

Frames

B Misc

M Penetration Handling

" Marrow Phrase

M Broad Phrase

m Time Integration

30

601

901

1201

1501

1801

2101

2401 2701

3001 Frames

Benchmark: Twisting

200K triangles 1 layer 2ndlayer
Time step:
1/200s

Multiple layers
and contacts

Average cloth —

simulation time:
0.97s/frame 3rd layer Alldayers

Played at 28x
speed

Benchmark: Flag

80K triangles

Time step:
1/100s

Multiple self-
collisions

Average cloth
simulation time:
0.35s/frame

Played at 10x ' |

speed

S

Benchmark: Sphere

d

200K triangles
Time step:
1/300s

Multiple layers
and contacts

Average cloth
simulation time:
0.94s/frame

Played at 26x
speed

»

Benchmark: Falling

172K triangles (-
Time step: 1/30s \)

Multiple inter-
object and intra-
object collisions

Average cloth
simulation time:
0.51s/frame

Played at 14x
speed

1/30s

Multiple layers
and contacts

« Average cloth
simulation time:

0.94s/frame

Played at 26x
speed

Outline

Motivation & Challenge
Related Work
Main Results

Algorithms

— Parallel Self-collision Culling

— Extended Spatial Hashing

— Optimized Cloth Simulation Pipeline

Results & Benchmarks
Conclusions

Main Results

Novel parallel GPU-based self-collision culling algorithm;

Considerable speedups over prior GPU-based
algorithms;

Almost real-time cloth simulation on complex
benchmarks on a commodity GPU

Seconds

S L N

0.84s/frame on
average |

1 ' 1l
0 -
1 301 601 S01 1201 1501 1801 210

* For meshes undergoing topological changes, the normal

cones and their associated contour edges need to be
updated on-the-fly.

1 |
1 2401 2 e

701 3001 Frames

 Integration with cloth design and VR systems

Acknowledgements

* National Key R&D Program of China

(2017YFB1002703), NSFC (61732015, 61572423,
61572424), the Science and Technology Project of
Zhejiang Province (2018C01080), and Zhejiang
Provincial NSFC (LZ16F020003).

NVIDIA for hardware donation (NVIDIA Tesla K40c)

Providers of all animation data

